SemanticSBML: computer-assisted construction, checking, and merging of biochemical models
Wolfram Liebermeister and Edda Klipp
(lieberme | klipp)@molgen.mpg.de

Overview

SBML is a popular XML-based standard for mathematical models in systems biology. As mathematical models in cell biology are growing in number and size, flexible ways to combine models will gain additional importance; model combination requires that the meaning of model elements is specified by annotations. The SemanticSBML tools assist the user in annotating, checking, and combining SBML models: SBMLannotate helps the user to annotate SBML model elements with unique identifiers from various databases. SBMLcheck verifies the syntactic and semantic validity of SBML files. SBMLmerge helps the user to merge SBML models. In the future, we envisage to support Reactome, Uniprot, MetaCyc. Users can also include new databases into SBMLannotate. The annotations are stored in the SBML code in a MIRIAM-compliant data format.

SBMLannotate

SBMLannotate allows you to link the elements of an SBML model to unique identifiers (IDs) from different databases (currently GO, KEGG, ChEBI, PubMed, 3DMET, and CAS; we envisage to support Reactome, Uniprot, MetaCyc). Users can also retrieve names and database IDs via a string search. To annotate a chemical reaction, SBMLannotate searches the KEGG database for reactions containing the respective metabolites as substrate and products. It is also possible to create entire annotated SBML models from a list of KEGG reaction IDs.

SBMLcheck

SBMLcheck performs various checks on the input SBML files. First of all, it verifies whether the model contains readable and consistent annotations. Elements without annotations are reported to the user. Furthermore SBMLcheck detects mistakes in the model structure, such as circular dependencies among algebraic equations or violations of atom number conservation in chemical reactions.

SBMLmerge

SBMLmerge assists you in merging two or more annotated models: during merging, it detects and resolves various syntactic and semantic conflicts, such as conflicting variable names, elements that appear in both input models, and also mathematical problems arising from the combination of equations. First, the program screens the models for identical elements. If the input models make contradicting statements about the same biochemical quantity, the user is asked to choose one of them. Afterwards, the program resolves circular dependencies in assignment rules, which may arise by the user's choices. In the end, the merging process results in a new, valid SBML model that can be visualised as a reaction network graph.

References