MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems


[Up] [Top]

Documentation for package ‘mxnet’ version 1.9.1

Help Pages

A C D G I L M O P R

-- A --

arguments Get the arguments of symbol.
as.array.MXNDArray as.array operator overload of mx.ndarray
as.matrix.MXNDArray as.matrix operator overload of mx.ndarray

-- C --

children Gets a new grouped symbol whose output contains inputs to output nodes of the original symbol.
ctx Get the context of mx.ndarray

-- D --

dim.MXNDArray Dimension operator overload of mx.ndarray

-- G --

graph.viz Convert symbol to Graphviz or visNetwork visualisation.

-- I --

im2rec Convert images into image recordio format
internals Get a symbol that contains all the internals
is.mx.context Check if the type is mxnet context.
is.mx.dataiter Judge if an object is mx.dataiter
is.mx.ndarray Check if src.array is mx.ndarray
is.mx.symbol Judge if an object is mx.symbol
is.serialized Check if the model has been serialized into RData-compatiable format.

-- L --

length.MXNDArray Length operator overload of mx.ndarray

-- M --

mx.apply Apply symbol to the inputs.
mx.callback.early.stop Early stop with different conditions
mx.callback.log.speedometer Calculate the training speed
mx.callback.log.train.metric Log training metric each period
mx.callback.save.checkpoint Save checkpoint to files each period iteration.
mx.cpu Create a mxnet CPU context.
mx.ctx.default Set/Get default context for array creation.
mx.exec.backward Peform an backward on the executors This function will MUTATE the state of exec
mx.exec.forward Peform an forward on the executors This function will MUTATE the state of exec
mx.exec.update.arg.arrays Update the executors with new arrays This function will MUTATE the state of exec
mx.exec.update.aux.arrays Update the executors with new arrays This function will MUTATE the state of exec
mx.exec.update.grad.arrays Update the executors with new arrays This function will MUTATE the state of exec
mx.gpu Create a mxnet GPU context.
mx.infer.rnn Inference of RNN model
mx.infer.rnn.one Inference for one-to-one fusedRNN (CUDA) models
mx.infer.rnn.one.unroll Inference for one-to-one unroll models
mx.init.create Create initialization of argument like arg.array
mx.init.internal.default Internal default value initialization scheme.
mx.init.normal Create a initializer that initialize the weight with normal(0, sd)
mx.init.uniform Create a initializer that initialize the weight with uniform [-scale, scale]
mx.init.Xavier Xavier initializer
mx.io.arrayiter Create MXDataIter compatible iterator from R's array
mx.io.bucket.iter Create Bucket Iter
mx.io.CSVIter Returns the CSV file iterator.
mx.io.extract Extract a certain field from DataIter.
mx.io.ImageDetRecordIter Create iterator for image detection dataset packed in recordio.
mx.io.ImageRecordInt8Iter Iterating on image RecordIO files
mx.io.ImageRecordIter Iterates on image RecordIO files
mx.io.ImageRecordIter_v1 Iterating on image RecordIO files
mx.io.ImageRecordUInt8Iter Iterating on image RecordIO files
mx.io.ImageRecordUInt8Iter_v1 Iterating on image RecordIO files
mx.io.LibSVMIter Returns the LibSVM iterator which returns data with 'csr' storage type. This iterator is experimental and should be used with care.
mx.io.MNISTIter Iterating on the MNIST dataset.
mx.kv.create Create a mxnet KVStore.
mx.lr_scheduler.FactorScheduler Learning rate scheduler. Reduction based on a factor value.
mx.lr_scheduler.MultiFactorScheduler Multifactor learning rate scheduler. Reduction based on a factor value at different steps.
mx.metric.accuracy Accuracy metric for classification
mx.metric.custom Helper function to create a customized metric
mx.metric.logistic_acc Accuracy metric for logistic regression
mx.metric.logloss LogLoss metric for logistic regression
mx.metric.mae MAE (Mean Absolute Error) metric for regression
mx.metric.mse MSE (Mean Squared Error) metric for regression
mx.metric.Perplexity Perplexity metric for language model
mx.metric.rmse RMSE (Root Mean Squared Error) metric for regression
mx.metric.rmsle RMSLE (Root Mean Squared Logarithmic Error) metric for regression
mx.metric.top_k_accuracy Top-k accuracy metric for classification
mx.mlp Convenience interface for multiple layer perceptron
mx.model.buckets Train RNN with bucket support
mx.model.FeedForward.create Create a MXNet Feedforward neural net model with the specified training.
mx.model.init.params Parameter initialization
mx.model.load Load model checkpoint from file.
mx.model.save Save model checkpoint into file.
mx.nd.abs Returns element-wise absolute value of the input.
mx.nd.Activation Applies an activation function element-wise to the input.
mx.nd.adam.update Update function for Adam optimizer. Adam is seen as a generalization of AdaGrad.
mx.nd.add.n Adds all input arguments element-wise.
mx.nd.all.finite Check if all the float numbers in the array are finite (used for AMP)
mx.nd.amp.cast Cast function between low precision float/FP32 used by AMP.
mx.nd.amp.multicast Cast function used by AMP, that casts its inputs to the common widest type.
mx.nd.arccos Returns element-wise inverse cosine of the input array.
mx.nd.arccosh Returns the element-wise inverse hyperbolic cosine of the input array, \ computed element-wise.
mx.nd.arcsin Returns element-wise inverse sine of the input array.
mx.nd.arcsinh Returns the element-wise inverse hyperbolic sine of the input array, \ computed element-wise.
mx.nd.arctan Returns element-wise inverse tangent of the input array.
mx.nd.arctanh Returns the element-wise inverse hyperbolic tangent of the input array, \ computed element-wise.
mx.nd.argmax Returns indices of the maximum values along an axis.
mx.nd.argmax.channel Returns argmax indices of each channel from the input array.
mx.nd.argmin Returns indices of the minimum values along an axis.
mx.nd.argsort Returns the indices that would sort an input array along the given axis.
mx.nd.array Create a new 'mx.ndarray' that copies the content from src on ctx.
mx.nd.batch.dot Batchwise dot product.
mx.nd.batch.take Takes elements from a data batch.
mx.nd.BatchNorm Batch normalization.
mx.nd.BatchNorm.v1 Batch normalization.
mx.nd.BilinearSampler Applies bilinear sampling to input feature map.
mx.nd.BlockGrad Stops gradient computation.
mx.nd.broadcast.add Returns element-wise sum of the input arrays with broadcasting.
mx.nd.broadcast.axes Broadcasts the input array over particular axes.
mx.nd.broadcast.axis Broadcasts the input array over particular axes.
mx.nd.broadcast.div Returns element-wise division of the input arrays with broadcasting.
mx.nd.broadcast.equal Returns the result of element-wise **equal to** (==) comparison operation with broadcasting.
mx.nd.broadcast.greater Returns the result of element-wise **greater than** (>) comparison operation with broadcasting.
mx.nd.broadcast.greater.equal Returns the result of element-wise **greater than or equal to** (>=) comparison operation with broadcasting.
mx.nd.broadcast.hypot Returns the hypotenuse of a right angled triangle, given its "legs" with broadcasting.
mx.nd.broadcast.lesser Returns the result of element-wise **lesser than** (<) comparison operation with broadcasting.
mx.nd.broadcast.lesser.equal Returns the result of element-wise **lesser than or equal to** (<=) comparison operation with broadcasting.
mx.nd.broadcast.like Broadcasts lhs to have the same shape as rhs.
mx.nd.broadcast.logical.and Returns the result of element-wise **logical and** with broadcasting.
mx.nd.broadcast.logical.or Returns the result of element-wise **logical or** with broadcasting.
mx.nd.broadcast.logical.xor Returns the result of element-wise **logical xor** with broadcasting.
mx.nd.broadcast.maximum Returns element-wise maximum of the input arrays with broadcasting.
mx.nd.broadcast.minimum Returns element-wise minimum of the input arrays with broadcasting.
mx.nd.broadcast.minus Returns element-wise difference of the input arrays with broadcasting.
mx.nd.broadcast.mod Returns element-wise modulo of the input arrays with broadcasting.
mx.nd.broadcast.mul Returns element-wise product of the input arrays with broadcasting.
mx.nd.broadcast.not.equal Returns the result of element-wise **not equal to** (!=) comparison operation with broadcasting.
mx.nd.broadcast.plus Returns element-wise sum of the input arrays with broadcasting.
mx.nd.broadcast.power Returns result of first array elements raised to powers from second array, element-wise with broadcasting.
mx.nd.broadcast.sub Returns element-wise difference of the input arrays with broadcasting.
mx.nd.broadcast.to Broadcasts the input array to a new shape.
mx.nd.Cast Casts all elements of the input to a new type.
mx.nd.cast Casts all elements of the input to a new type.
mx.nd.cast.storage Casts tensor storage type to the new type.
mx.nd.cbrt Returns element-wise cube-root value of the input.
mx.nd.ceil Returns element-wise ceiling of the input.
mx.nd.choose.element.0index Picks elements from an input array according to the input indices along the given axis.
mx.nd.clip Clips (limits) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. Clipping "x" between 'a_min' and 'a_max' would be:: .. math:: clip(x, a_min, a_max) = \max(\min(x, a_max), a_min)) Example:: x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] clip(x,1,8) = [ 1., 1., 2., 3., 4., 5., 6., 7., 8., 8.] The storage type of "clip" output depends on storage types of inputs and the a_min, a_max \ parameter values: - clip(default) = default - clip(row_sparse, a_min <= 0, a_max >= 0) = row_sparse - clip(csr, a_min <= 0, a_max >= 0) = csr - clip(row_sparse, a_min < 0, a_max < 0) = default - clip(row_sparse, a_min > 0, a_max > 0) = default - clip(csr, a_min < 0, a_max < 0) = csr - clip(csr, a_min > 0, a_max > 0) = csr
mx.nd.col2im Combining the output column matrix of im2col back to image array.
mx.nd.Concat Joins input arrays along a given axis.
mx.nd.concat Joins input arrays along a given axis.
mx.nd.Convolution Compute *N*-D convolution on *(N+2)*-D input.
mx.nd.Convolution.v1 This operator is DEPRECATED. Apply convolution to input then add a bias.
mx.nd.copyto Generate an mx.ndarray object on ctx, with data copied from src
mx.nd.Correlation Applies correlation to inputs.
mx.nd.cos Computes the element-wise cosine of the input array.
mx.nd.cosh Returns the hyperbolic cosine of the input array, computed element-wise.
mx.nd.Crop .. note:: 'Crop' is deprecated. Use 'slice' instead.
mx.nd.crop Slices a region of the array. .. note:: "crop" is deprecated. Use "slice" instead. This function returns a sliced array between the indices given by 'begin' and 'end' with the corresponding 'step'. For an input array of "shape=(d_0, d_1, ..., d_n-1)", slice operation with "begin=(b_0, b_1...b_m-1)", "end=(e_0, e_1, ..., e_m-1)", and "step=(s_0, s_1, ..., s_m-1)", where m <= n, results in an array with the shape "(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-1)". The resulting array's *k*-th dimension contains elements from the *k*-th dimension of the input array starting from index "b_k" (inclusive) with step "s_k" until reaching "e_k" (exclusive). If the *k*-th elements are 'None' in the sequence of 'begin', 'end', and 'step', the following rule will be used to set default values. If 's_k' is 'None', set 's_k=1'. If 's_k > 0', set 'b_k=0', 'e_k=d_k'; else, set 'b_k=d_k-1', 'e_k=-1'. The storage type of "slice" output depends on storage types of inputs - slice(csr) = csr - otherwise, "slice" generates output with default storage .. note:: When input data storage type is csr, it only supports step=(), or step=(None,), or step=(1,) to generate a csr output. For other step parameter values, it falls back to slicing a dense tensor. Example:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice(x, begin=(0,1), end=(2,4)) = [[ 2., 3., 4.], [ 6., 7., 8.]] slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.], [5., 7.], [1., 3.]]
mx.nd.ctc.loss Connectionist Temporal Classification Loss.
mx.nd.CTCLoss Connectionist Temporal Classification Loss.
mx.nd.cumsum Return the cumulative sum of the elements along a given axis.
mx.nd.Custom Apply a custom operator implemented in a frontend language (like Python).
mx.nd.Deconvolution Computes 1D or 2D transposed convolution (aka fractionally strided convolution) of the input tensor. This operation can be seen as the gradient of Convolution operation with respect to its input. Convolution usually reduces the size of the input. Transposed convolution works the other way, going from a smaller input to a larger output while preserving the connectivity pattern.
mx.nd.degrees Converts each element of the input array from radians to degrees.
mx.nd.depth.to.space Rearranges(permutes) data from depth into blocks of spatial data. Similar to ONNX DepthToSpace operator: https://github.com/onnx/onnx/blob/master/docs/Operators.md#DepthToSpace. The output is a new tensor where the values from depth dimension are moved in spatial blocks to height and width dimension. The reverse of this operation is "space_to_depth". .. math:: \begingather* x \prime = reshape(x, [N, block\_size, block\_size, C / (block\_size ^ 2), H * block\_size, W * block\_size]) \ x \prime \prime = transpose(x \prime, [0, 3, 4, 1, 5, 2]) \ y = reshape(x \prime \prime, [N, C / (block\_size ^ 2), H * block\_size, W * block\_size]) \endgather* where :math:'x' is an input tensor with default layout as :math:'[N, C, H, W]': [batch, channels, height, width] and :math:'y' is the output tensor of layout :math:'[N, C / (block\_size ^ 2), H * block\_size, W * block\_size]' Example:: x = [[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]] depth_to_space(x, 2) = [[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15, 21, 16, 22, 17, 23]]]]
mx.nd.diag Extracts a diagonal or constructs a diagonal array.
mx.nd.dot Dot product of two arrays.
mx.nd.Dropout Applies dropout operation to input array.
mx.nd.ElementWiseSum Adds all input arguments element-wise.
mx.nd.elemwise.add Adds arguments element-wise.
mx.nd.elemwise.div Divides arguments element-wise.
mx.nd.elemwise.mul Multiplies arguments element-wise.
mx.nd.elemwise.sub Subtracts arguments element-wise.
mx.nd.Embedding Maps integer indices to vector representations (embeddings).
mx.nd.erf Returns element-wise gauss error function of the input.
mx.nd.erfinv Returns element-wise inverse gauss error function of the input.
mx.nd.exp Returns element-wise exponential value of the input.
mx.nd.expand.dims Inserts a new axis of size 1 into the array shape For example, given "x" with shape "(2,3,4)", then "expand_dims(x, axis=1)" will return a new array with shape "(2,1,3,4)".
mx.nd.expm1 Returns "exp(x) - 1" computed element-wise on the input.
mx.nd.fill.element.0index Fill one element of each line(row for python, column for R/Julia) in lhs according to index indicated by rhs and values indicated by mhs. This function assume rhs uses 0-based index.
mx.nd.fix Returns element-wise rounded value to the nearest \ integer towards zero of the input.
mx.nd.Flatten Flattens the input array into a 2-D array by collapsing the higher dimensions. .. note:: 'Flatten' is deprecated. Use 'flatten' instead. For an input array with shape "(d1, d2, ..., dk)", 'flatten' operation reshapes the input array into an output array of shape "(d1, d2*...*dk)". Note that the behavior of this function is different from numpy.ndarray.flatten, which behaves similar to mxnet.ndarray.reshape((-1,)). Example:: x = [[ [1,2,3], [4,5,6], [7,8,9] ], [ [1,2,3], [4,5,6], [7,8,9] ]], flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
mx.nd.flatten Flattens the input array into a 2-D array by collapsing the higher dimensions. .. note:: 'Flatten' is deprecated. Use 'flatten' instead. For an input array with shape "(d1, d2, ..., dk)", 'flatten' operation reshapes the input array into an output array of shape "(d1, d2*...*dk)". Note that the behavior of this function is different from numpy.ndarray.flatten, which behaves similar to mxnet.ndarray.reshape((-1,)). Example:: x = [[ [1,2,3], [4,5,6], [7,8,9] ], [ [1,2,3], [4,5,6], [7,8,9] ]], flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
mx.nd.flip Reverses the order of elements along given axis while preserving array shape. Note: reverse and flip are equivalent. We use reverse in the following examples. Examples:: x = [[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.]] reverse(x, axis=0) = [[ 5., 6., 7., 8., 9.], [ 0., 1., 2., 3., 4.]] reverse(x, axis=1) = [[ 4., 3., 2., 1., 0.], [ 9., 8., 7., 6., 5.]]
mx.nd.floor Returns element-wise floor of the input.
mx.nd.ftml.update The FTML optimizer described in *FTML - Follow the Moving Leader in Deep Learning*, available at http://proceedings.mlr.press/v70/zheng17a/zheng17a.pdf.
mx.nd.ftrl.update Update function for Ftrl optimizer. Referenced from *Ad Click Prediction: a View from the Trenches*, available at http://dl.acm.org/citation.cfm?id=2488200.
mx.nd.FullyConnected Applies a linear transformation: :math:'Y = XW^T + b'.
mx.nd.gamma Returns the gamma function (extension of the factorial function \ to the reals), computed element-wise on the input array.
mx.nd.gammaln Returns element-wise log of the absolute value of the gamma function \ of the input.
mx.nd.gather.nd Gather elements or slices from 'data' and store to a tensor whose shape is defined by 'indices'.
mx.nd.GridGenerator Generates 2D sampling grid for bilinear sampling.
mx.nd.GroupNorm Group normalization.
mx.nd.hard.sigmoid Computes hard sigmoid of x element-wise.
mx.nd.identity Returns a copy of the input.
mx.nd.IdentityAttachKLSparseReg Apply a sparse regularization to the output a sigmoid activation function.
mx.nd.im2col Extract sliding blocks from input array.
mx.nd.InstanceNorm Applies instance normalization to the n-dimensional input array.
mx.nd.khatri.rao Computes the Khatri-Rao product of the input matrices.
mx.nd.L2Normalization Normalize the input array using the L2 norm.
mx.nd.lamb.update.phase1 Phase I of lamb update it performs the following operations and returns g:.
mx.nd.lamb.update.phase2 Phase II of lamb update it performs the following operations and updates grad.
mx.nd.LayerNorm Layer normalization.
mx.nd.LeakyReLU Applies Leaky rectified linear unit activation element-wise to the input.
mx.nd.linalg.det Compute the determinant of a matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.extractdiag Extracts the diagonal entries of a square matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.extracttrian Extracts a triangular sub-matrix from a square matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.gelqf LQ factorization for general matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.gemm Performs general matrix multiplication and accumulation. Input are tensors *A*, *B*, *C*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.nd.linalg.gemm2 Performs general matrix multiplication. Input are tensors *A*, *B*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.nd.linalg.inverse Compute the inverse of a matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.makediag Constructs a square matrix with the input as diagonal. Input is a tensor *A* of dimension *n >= 1*.
mx.nd.linalg.maketrian Constructs a square matrix with the input representing a specific triangular sub-matrix. This is basically the inverse of *linalg.extracttrian*. Input is a tensor *A* of dimension *n >= 1*.
mx.nd.linalg.potrf Performs Cholesky factorization of a symmetric positive-definite matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.potri Performs matrix inversion from a Cholesky factorization. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.slogdet Compute the sign and log of the determinant of a matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.sumlogdiag Computes the sum of the logarithms of the diagonal elements of a square matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.syrk Multiplication of matrix with its transpose. Input is a tensor *A* of dimension *n >= 2*.
mx.nd.linalg.trmm Performs multiplication with a lower triangular matrix. Input are tensors *A*, *B*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.nd.linalg.trsm Solves matrix equation involving a lower triangular matrix. Input are tensors *A*, *B*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.nd.LinearRegressionOutput Computes and optimizes for squared loss during backward propagation. Just outputs "data" during forward propagation.
mx.nd.load Load an mx.nd.array object on disk
mx.nd.log Returns element-wise Natural logarithmic value of the input.
mx.nd.log.softmax Computes the log softmax of the input. This is equivalent to computing softmax followed by log.
mx.nd.log10 Returns element-wise Base-10 logarithmic value of the input.
mx.nd.log1p Returns element-wise "log(1 + x)" value of the input.
mx.nd.log2 Returns element-wise Base-2 logarithmic value of the input.
mx.nd.logical.not Returns the result of logical NOT (!) function
mx.nd.LogisticRegressionOutput Applies a logistic function to the input.
mx.nd.LRN Applies local response normalization to the input.
mx.nd.MAERegressionOutput Computes mean absolute error of the input.
mx.nd.make.loss Make your own loss function in network construction.
mx.nd.MakeLoss Make your own loss function in network construction.
mx.nd.max Computes the max of array elements over given axes.
mx.nd.max.axis Computes the max of array elements over given axes.
mx.nd.mean Computes the mean of array elements over given axes.
mx.nd.min Computes the min of array elements over given axes.
mx.nd.min.axis Computes the min of array elements over given axes.
mx.nd.moments Calculate the mean and variance of 'data'.
mx.nd.mp.lamb.update.phase1 Mixed Precision version of Phase I of lamb update it performs the following operations and returns g:.
mx.nd.mp.lamb.update.phase2 Mixed Precision version Phase II of lamb update it performs the following operations and updates grad.
mx.nd.mp.nag.mom.update Update function for multi-precision Nesterov Accelerated Gradient( NAG) optimizer.
mx.nd.mp.sgd.mom.update Updater function for multi-precision sgd optimizer
mx.nd.mp.sgd.update Updater function for multi-precision sgd optimizer
mx.nd.multi.all.finite Check if all the float numbers in all the arrays are finite (used for AMP)
mx.nd.multi.lars Compute the LARS coefficients of multiple weights and grads from their sums of square"
mx.nd.multi.mp.sgd.mom.update Momentum update function for multi-precision Stochastic Gradient Descent (SGD) optimizer.
mx.nd.multi.mp.sgd.update Update function for multi-precision Stochastic Gradient Descent (SDG) optimizer.
mx.nd.multi.sgd.mom.update Momentum update function for Stochastic Gradient Descent (SGD) optimizer.
mx.nd.multi.sgd.update Update function for Stochastic Gradient Descent (SDG) optimizer.
mx.nd.multi.sum.sq Compute the sums of squares of multiple arrays
mx.nd.nag.mom.update Update function for Nesterov Accelerated Gradient( NAG) optimizer. It updates the weights using the following formula,
mx.nd.nanprod Computes the product of array elements over given axes treating Not a Numbers ("NaN") as one.
mx.nd.nansum Computes the sum of array elements over given axes treating Not a Numbers ("NaN") as zero.
mx.nd.negative Numerical negative of the argument, element-wise.
mx.nd.norm Computes the norm on an NDArray.
mx.nd.normal Draw random samples from a normal (Gaussian) distribution.
mx.nd.one.hot Returns a one-hot array.
mx.nd.ones Generate an mx.ndarray object with ones
mx.nd.ones.like Return an array of ones with the same shape and type as the input array.
mx.nd.Pad Pads an input array with a constant or edge values of the array.
mx.nd.pad Pads an input array with a constant or edge values of the array.
mx.nd.pick Picks elements from an input array according to the input indices along the given axis.
mx.nd.Pooling Performs pooling on the input.
mx.nd.Pooling.v1 This operator is DEPRECATED. Perform pooling on the input.
mx.nd.preloaded.multi.mp.sgd.mom.update Momentum update function for multi-precision Stochastic Gradient Descent (SGD) optimizer.
mx.nd.preloaded.multi.mp.sgd.update Update function for multi-precision Stochastic Gradient Descent (SDG) optimizer.
mx.nd.preloaded.multi.sgd.mom.update Momentum update function for Stochastic Gradient Descent (SGD) optimizer.
mx.nd.preloaded.multi.sgd.update Update function for Stochastic Gradient Descent (SDG) optimizer.
mx.nd.prod Computes the product of array elements over given axes.
mx.nd.radians Converts each element of the input array from degrees to radians.
mx.nd.random.exponential Draw random samples from an exponential distribution.
mx.nd.random.gamma Draw random samples from a gamma distribution.
mx.nd.random.generalized.negative.binomial Draw random samples from a generalized negative binomial distribution.
mx.nd.random.negative.binomial Draw random samples from a negative binomial distribution.
mx.nd.random.normal Draw random samples from a normal (Gaussian) distribution.
mx.nd.random.pdf.dirichlet Computes the value of the PDF of *sample* of Dirichlet distributions with parameter *alpha*.
mx.nd.random.pdf.exponential Computes the value of the PDF of *sample* of exponential distributions with parameters *lam* (rate).
mx.nd.random.pdf.gamma Computes the value of the PDF of *sample* of gamma distributions with parameters *alpha* (shape) and *beta* (rate).
mx.nd.random.pdf.generalized.negative.binomial Computes the value of the PDF of *sample* of generalized negative binomial distributions with parameters *mu* (mean) and *alpha* (dispersion). This can be understood as a reparameterization of the negative binomial, where *k* = *1 / alpha* and *p* = *1 / (mu \* alpha + 1)*.
mx.nd.random.pdf.negative.binomial Computes the value of the PDF of samples of negative binomial distributions with parameters *k* (failure limit) and *p* (failure probability).
mx.nd.random.pdf.normal Computes the value of the PDF of *sample* of normal distributions with parameters *mu* (mean) and *sigma* (standard deviation).
mx.nd.random.pdf.poisson Computes the value of the PDF of *sample* of Poisson distributions with parameters *lam* (rate).
mx.nd.random.pdf.uniform Computes the value of the PDF of *sample* of uniform distributions on the intervals given by *[low,high)*.
mx.nd.random.poisson Draw random samples from a Poisson distribution.
mx.nd.random.randint Draw random samples from a discrete uniform distribution.
mx.nd.random.uniform Draw random samples from a uniform distribution.
mx.nd.ravel.multi.index Converts a batch of index arrays into an array of flat indices. The operator follows numpy conventions so a single multi index is given by a column of the input matrix. The leading dimension may be left unspecified by using -1 as placeholder.
mx.nd.rcbrt Returns element-wise inverse cube-root value of the input.
mx.nd.reciprocal Returns the reciprocal of the argument, element-wise.
mx.nd.relu Computes rectified linear activation.
mx.nd.repeat Repeats elements of an array. By default, "repeat" flattens the input array into 1-D and then repeats the elements:: x = [[ 1, 2], [ 3, 4]] repeat(x, repeats=2) = [ 1., 1., 2., 2., 3., 3., 4., 4.] The parameter "axis" specifies the axis along which to perform repeat:: repeat(x, repeats=2, axis=1) = [[ 1., 1., 2., 2.], [ 3., 3., 4., 4.]] repeat(x, repeats=2, axis=0) = [[ 1., 2.], [ 1., 2.], [ 3., 4.], [ 3., 4.]] repeat(x, repeats=2, axis=-1) = [[ 1., 1., 2., 2.], [ 3., 3., 4., 4.]]
mx.nd.reset.arrays Set to zero multiple arrays
mx.nd.Reshape Reshapes the input array. .. note:: "Reshape" is deprecated, use "reshape" Given an array and a shape, this function returns a copy of the array in the new shape. The shape is a tuple of integers such as (2,3,4). The size of the new shape should be same as the size of the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]] Some dimensions of the shape can take special values from the set 0, -1, -2, -3, -4. The significance of each is explained below: - "0" copy this dimension from the input to the output shape. Example:: - input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - "-1" infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1. Example:: - input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape = (2,3,4), shape=(-1,), output shape = (24,) - "-2" copy all/remainder of the input dimensions to the output shape. Example:: - input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1) - "-3" use the product of two consecutive dimensions of the input shape as the output dimension. Example:: - input shape = (2,3,4), shape = (-3,4), output shape = (6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - "-4" split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1). Example:: - input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument 'reverse' is set to 1, then the special values are inferred from right to left. Example:: - without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5) - with reverse=1, output shape will be (50,4).
mx.nd.reshape Reshapes the input array. .. note:: "Reshape" is deprecated, use "reshape" Given an array and a shape, this function returns a copy of the array in the new shape. The shape is a tuple of integers such as (2,3,4). The size of the new shape should be same as the size of the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]] Some dimensions of the shape can take special values from the set 0, -1, -2, -3, -4. The significance of each is explained below: - "0" copy this dimension from the input to the output shape. Example:: - input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - "-1" infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1. Example:: - input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape = (2,3,4), shape=(-1,), output shape = (24,) - "-2" copy all/remainder of the input dimensions to the output shape. Example:: - input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1) - "-3" use the product of two consecutive dimensions of the input shape as the output dimension. Example:: - input shape = (2,3,4), shape = (-3,4), output shape = (6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - "-4" split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1). Example:: - input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument 'reverse' is set to 1, then the special values are inferred from right to left. Example:: - without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5) - with reverse=1, output shape will be (50,4).
mx.nd.reshape.like Reshape some or all dimensions of 'lhs' to have the same shape as some or all dimensions of 'rhs'.
mx.nd.reverse Reverses the order of elements along given axis while preserving array shape. Note: reverse and flip are equivalent. We use reverse in the following examples. Examples:: x = [[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.]] reverse(x, axis=0) = [[ 5., 6., 7., 8., 9.], [ 0., 1., 2., 3., 4.]] reverse(x, axis=1) = [[ 4., 3., 2., 1., 0.], [ 9., 8., 7., 6., 5.]]
mx.nd.rint Returns element-wise rounded value to the nearest integer of the input.
mx.nd.rmsprop.update Update function for 'RMSProp' optimizer.
mx.nd.rmspropalex.update Update function for RMSPropAlex optimizer.
mx.nd.RNN Applies recurrent layers to input data. Currently, vanilla RNN, LSTM and GRU are implemented, with both multi-layer and bidirectional support.
mx.nd.ROIPooling Performs region of interest(ROI) pooling on the input array.
mx.nd.round Returns element-wise rounded value to the nearest integer of the input.
mx.nd.rsqrt Returns element-wise inverse square-root value of the input.
mx.nd.sample.exponential Concurrent sampling from multiple exponential distributions with parameters lambda (rate).
mx.nd.sample.gamma Concurrent sampling from multiple gamma distributions with parameters *alpha* (shape) and *beta* (scale).
mx.nd.sample.generalized.negative.binomial Concurrent sampling from multiple generalized negative binomial distributions with parameters *mu* (mean) and *alpha* (dispersion).
mx.nd.sample.multinomial Concurrent sampling from multiple multinomial distributions.
mx.nd.sample.negative.binomial Concurrent sampling from multiple negative binomial distributions with parameters *k* (failure limit) and *p* (failure probability).
mx.nd.sample.normal Concurrent sampling from multiple normal distributions with parameters *mu* (mean) and *sigma* (standard deviation).
mx.nd.sample.poisson Concurrent sampling from multiple Poisson distributions with parameters lambda (rate).
mx.nd.sample.uniform Concurrent sampling from multiple uniform distributions on the intervals given by *[low,high)*.
mx.nd.save Save an mx.nd.array object
mx.nd.scatter.nd Scatters data into a new tensor according to indices.
mx.nd.SequenceLast Takes the last element of a sequence.
mx.nd.SequenceMask Sets all elements outside the sequence to a constant value.
mx.nd.SequenceReverse Reverses the elements of each sequence.
mx.nd.sgd.mom.update Momentum update function for Stochastic Gradient Descent (SGD) optimizer.
mx.nd.sgd.update Update function for Stochastic Gradient Descent (SGD) optimizer.
mx.nd.shape.array Returns a 1D int64 array containing the shape of data.
mx.nd.shuffle Randomly shuffle the elements.
mx.nd.sigmoid Computes sigmoid of x element-wise.
mx.nd.sign Returns element-wise sign of the input.
mx.nd.signsgd.update Update function for SignSGD optimizer.
mx.nd.signum.update SIGN momentUM (Signum) optimizer.
mx.nd.sin Computes the element-wise sine of the input array.
mx.nd.sinh Returns the hyperbolic sine of the input array, computed element-wise.
mx.nd.size.array Returns a 1D int64 array containing the size of data.
mx.nd.slice.axis Slices along a given axis. Returns an array slice along a given 'axis' starting from the 'begin' index to the 'end' index. Examples:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice_axis(x, axis=0, begin=1, end=3) = [[ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice_axis(x, axis=1, begin=0, end=2) = [[ 1., 2.], [ 5., 6.], [ 9., 10.]] slice_axis(x, axis=1, begin=-3, end=-1) = [[ 2., 3.], [ 6., 7.], [ 10., 11.]]
mx.nd.slice.like Slices a region of the array like the shape of another array. This function is similar to "slice", however, the 'begin' are always '0's and 'end' of specific axes are inferred from the second input 'shape_like'. Given the second 'shape_like' input of "shape=(d_0, d_1, ..., d_n-1)", a "slice_like" operator with default empty 'axes', it performs the following operation: " out = slice(input, begin=(0, 0, ..., 0), end=(d_0, d_1, ..., d_n-1))". When 'axes' is not empty, it is used to speficy which axes are being sliced. Given a 4-d input data, "slice_like" operator with "axes=(0, 2, -1)" will perform the following operation: " out = slice(input, begin=(0, 0, 0, 0), end=(d_0, None, d_2, d_3))". Note that it is allowed to have first and second input with different dimensions, however, you have to make sure the 'axes' are specified and not exceeding the dimension limits. For example, given 'input_1' with "shape=(2,3,4,5)" and 'input_2' with "shape=(1,2,3)", it is not allowed to use: " out = slice_like(a, b)" because ndim of 'input_1' is 4, and ndim of 'input_2' is 3. The following is allowed in this situation: " out = slice_like(a, b, axes=(0, 2))" Example:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] y = [[ 0., 0., 0.], [ 0., 0., 0.]] slice_like(x, y) = [[ 1., 2., 3.] [ 5., 6., 7.]] slice_like(x, y, axes=(0, 1)) = [[ 1., 2., 3.] [ 5., 6., 7.]] slice_like(x, y, axes=(0)) = [[ 1., 2., 3., 4.] [ 5., 6., 7., 8.]] slice_like(x, y, axes=(-1)) = [[ 1., 2., 3.] [ 5., 6., 7.] [ 9., 10., 11.]]
mx.nd.SliceChannel Splits an array along a particular axis into multiple sub-arrays.
mx.nd.smooth.l1 Calculate Smooth L1 Loss(lhs, scalar) by summing
mx.nd.Softmax Computes the gradient of cross entropy loss with respect to softmax output.
mx.nd.softmax Applies the softmax function.
mx.nd.softmax.cross.entropy Calculate cross entropy of softmax output and one-hot label.
mx.nd.SoftmaxActivation Applies softmax activation to input. This is intended for internal layers.
mx.nd.SoftmaxOutput Computes the gradient of cross entropy loss with respect to softmax output.
mx.nd.softmin Applies the softmin function.
mx.nd.softsign Computes softsign of x element-wise.
mx.nd.sort Returns a sorted copy of an input array along the given axis.
mx.nd.space.to.depth Rearranges(permutes) blocks of spatial data into depth. Similar to ONNX SpaceToDepth operator: https://github.com/onnx/onnx/blob/master/docs/Operators.md#SpaceToDepth The output is a new tensor where the values from height and width dimension are moved to the depth dimension. The reverse of this operation is "depth_to_space". .. math:: \begingather* x \prime = reshape(x, [N, C, H / block\_size, block\_size, W / block\_size, block\_size]) \ x \prime \prime = transpose(x \prime, [0, 3, 5, 1, 2, 4]) \ y = reshape(x \prime \prime, [N, C * (block\_size ^ 2), H / block\_size, W / block\_size]) \endgather* where :math:'x' is an input tensor with default layout as :math:'[N, C, H, W]': [batch, channels, height, width] and :math:'y' is the output tensor of layout :math:'[N, C * (block\_size ^ 2), H / block\_size, W / block\_size]' Example:: x = [[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15, 21, 16, 22, 17, 23]]]] space_to_depth(x, 2) = [[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]]
mx.nd.SpatialTransformer Applies a spatial transformer to input feature map.
mx.nd.split Splits an array along a particular axis into multiple sub-arrays.
mx.nd.sqrt Returns element-wise square-root value of the input.
mx.nd.square Returns element-wise squared value of the input.
mx.nd.squeeze Remove single-dimensional entries from the shape of an array. Same behavior of defining the output tensor shape as numpy.squeeze for the most of cases. See the following note for exception. Examples:: data = [[[0], [1], [2]]] squeeze(data) = [0, 1, 2] squeeze(data, axis=0) = [[0], [1], [2]] squeeze(data, axis=2) = [[0, 1, 2]] squeeze(data, axis=(0, 2)) = [0, 1, 2] .. Note:: The output of this operator will keep at least one dimension not removed. For example, squeeze([[[4]]]) = [4], while in numpy.squeeze, the output will become a scalar.
mx.nd.stack Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0 it will be the first dimension and if axis=-1 it will be the last dimension. Examples:: x = [1, 2] y = [3, 4] stack(x, y) = [[1, 2], [3, 4]] stack(x, y, axis=1) = [[1, 3], [2, 4]]
mx.nd.stop.gradient Stops gradient computation.
mx.nd.sum Computes the sum of array elements over given axes.
mx.nd.sum.axis Computes the sum of array elements over given axes.
mx.nd.SVMOutput Computes support vector machine based transformation of the input.
mx.nd.swapaxes Interchanges two axes of an array.
mx.nd.SwapAxis Interchanges two axes of an array.
mx.nd.take Takes elements from an input array along the given axis.
mx.nd.tan Computes the element-wise tangent of the input array.
mx.nd.tanh Returns the hyperbolic tangent of the input array, computed element-wise.
mx.nd.tile Repeats the whole array multiple times. If "reps" has length *d*, and input array has dimension of *n*. There are three cases: - **n=d**. Repeat *i*-th dimension of the input by "reps[i]" times:: x = [[1, 2], [3, 4]] tile(x, reps=(2,3)) = [[ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.], [ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.]] - **n>d**. "reps" is promoted to length *n* by pre-pending 1's to it. Thus for an input shape "(2,3)", "repos=(2,)" is treated as "(1,2)":: tile(x, reps=(2,)) = [[ 1., 2., 1., 2.], [ 3., 4., 3., 4.]] - **n<d**. The input is promoted to be d-dimensional by prepending new axes. So a shape "(2,2)" array is promoted to "(1,2,2)" for 3-D replication:: tile(x, reps=(2,2,3)) = [[[ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.], [ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.]], [[ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.], [ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.]]]
mx.nd.topk Returns the indices of the top *k* elements in an input array along the given axis (by default). If ret_type is set to 'value' returns the value of top *k* elements (instead of indices). In case of ret_type = 'both', both value and index would be returned. The returned elements will be sorted.
mx.nd.transpose Permutes the dimensions of an array. Examples:: x = [[ 1, 2], [ 3, 4]] transpose(x) = [[ 1., 3.], [ 2., 4.]] x = [[[ 1., 2.], [ 3., 4.]], [[ 5., 6.], [ 7., 8.]]] transpose(x) = [[[ 1., 5.], [ 3., 7.]], [[ 2., 6.], [ 4., 8.]]] transpose(x, axes=(1,0,2)) = [[[ 1., 2.], [ 5., 6.]], [[ 3., 4.], [ 7., 8.]]]
mx.nd.trunc Return the element-wise truncated value of the input.
mx.nd.uniform Draw random samples from a uniform distribution.
mx.nd.unravel.index Converts an array of flat indices into a batch of index arrays. The operator follows numpy conventions so a single multi index is given by a column of the output matrix. The leading dimension may be left unspecified by using -1 as placeholder.
mx.nd.UpSampling Upsamples the given input data.
mx.nd.where Return the elements, either from x or y, depending on the condition.
mx.nd.zeros Generate an mx.nd.array object with zeros
mx.nd.zeros.like Return an array of zeros with the same shape, type and storage type as the input array.
mx.opt.adadelta Create an AdaDelta optimizer with respective parameters.
mx.opt.adagrad Create an AdaGrad optimizer with respective parameters. AdaGrad optimizer of Duchi et al., 2011,
mx.opt.adam Create an Adam optimizer with respective parameters. Adam optimizer as described in [King2014].
mx.opt.create Create an optimizer by name and parameters
mx.opt.get.updater Get an updater closure that can take list of weight and gradient and return updated list of weight.
mx.opt.nag Create a Nesterov Accelerated SGD( NAG) optimizer.
mx.opt.rmsprop Create an RMSProp optimizer with respective parameters. Reference: Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2). The code follows: http://arxiv.org/pdf/1308.0850v5.pdf Eq(38) - Eq(45) by Alex Graves, 2013.
mx.opt.sgd Create an SGD optimizer with respective parameters. Perform SGD with momentum update
mx.profiler.config Set up the configuration of profiler.
mx.profiler.state Set up the profiler state to record operator.
mx.rnorm Generate nomal distribution with mean and sd.
mx.runif Generate uniform distribution in [low, high) with specified shape.
mx.serialize Serialize MXNet model into RData-compatiable format.
mx.set.seed Set the seed used by mxnet device-specific random number generators.
mx.simple.bind Simple bind the symbol to executor, with information from input shapes.
mx.symbol.abs abs:Returns element-wise absolute value of the input.
mx.symbol.Activation Activation:Applies an activation function element-wise to the input.
mx.symbol.adam_update adam_update:Update function for Adam optimizer. Adam is seen as a generalization of AdaGrad.
mx.symbol.add_n add_n:Adds all input arguments element-wise.
mx.symbol.all_finite all_finite:Check if all the float numbers in the array are finite (used for AMP)
mx.symbol.amp_cast amp_cast:Cast function between low precision float/FP32 used by AMP.
mx.symbol.amp_multicast amp_multicast:Cast function used by AMP, that casts its inputs to the common widest type.
mx.symbol.arccos arccos:Returns element-wise inverse cosine of the input array.
mx.symbol.arccosh arccosh:Returns the element-wise inverse hyperbolic cosine of the input array, \ computed element-wise.
mx.symbol.arcsin arcsin:Returns element-wise inverse sine of the input array.
mx.symbol.arcsinh arcsinh:Returns the element-wise inverse hyperbolic sine of the input array, \ computed element-wise.
mx.symbol.arctan arctan:Returns element-wise inverse tangent of the input array.
mx.symbol.arctanh arctanh:Returns the element-wise inverse hyperbolic tangent of the input array, \ computed element-wise.
mx.symbol.argmax argmax:Returns indices of the maximum values along an axis.
mx.symbol.argmax_channel argmax_channel:Returns argmax indices of each channel from the input array.
mx.symbol.argmin argmin:Returns indices of the minimum values along an axis.
mx.symbol.argsort argsort:Returns the indices that would sort an input array along the given axis.
mx.symbol.BatchNorm BatchNorm:Batch normalization.
mx.symbol.BatchNorm_v1 BatchNorm_v1:Batch normalization.
mx.symbol.batch_dot batch_dot:Batchwise dot product.
mx.symbol.batch_take batch_take:Takes elements from a data batch.
mx.symbol.BilinearSampler BilinearSampler:Applies bilinear sampling to input feature map.
mx.symbol.BlockGrad BlockGrad:Stops gradient computation.
mx.symbol.broadcast_add broadcast_add:Returns element-wise sum of the input arrays with broadcasting.
mx.symbol.broadcast_axes broadcast_axes:Broadcasts the input array over particular axes.
mx.symbol.broadcast_axis broadcast_axis:Broadcasts the input array over particular axes.
mx.symbol.broadcast_div broadcast_div:Returns element-wise division of the input arrays with broadcasting.
mx.symbol.broadcast_equal broadcast_equal:Returns the result of element-wise **equal to** (==) comparison operation with broadcasting.
mx.symbol.broadcast_greater broadcast_greater:Returns the result of element-wise **greater than** (>) comparison operation with broadcasting.
mx.symbol.broadcast_greater_equal broadcast_greater_equal:Returns the result of element-wise **greater than or equal to** (>=) comparison operation with broadcasting.
mx.symbol.broadcast_hypot broadcast_hypot: Returns the hypotenuse of a right angled triangle, given its "legs" with broadcasting.
mx.symbol.broadcast_lesser broadcast_lesser:Returns the result of element-wise **lesser than** (<) comparison operation with broadcasting.
mx.symbol.broadcast_lesser_equal broadcast_lesser_equal:Returns the result of element-wise **lesser than or equal to** (<=) comparison operation with broadcasting.
mx.symbol.broadcast_like broadcast_like:Broadcasts lhs to have the same shape as rhs.
mx.symbol.broadcast_logical_and broadcast_logical_and:Returns the result of element-wise **logical and** with broadcasting.
mx.symbol.broadcast_logical_or broadcast_logical_or:Returns the result of element-wise **logical or** with broadcasting.
mx.symbol.broadcast_logical_xor broadcast_logical_xor:Returns the result of element-wise **logical xor** with broadcasting.
mx.symbol.broadcast_maximum broadcast_maximum:Returns element-wise maximum of the input arrays with broadcasting.
mx.symbol.broadcast_minimum broadcast_minimum:Returns element-wise minimum of the input arrays with broadcasting.
mx.symbol.broadcast_minus broadcast_minus:Returns element-wise difference of the input arrays with broadcasting.
mx.symbol.broadcast_mod broadcast_mod:Returns element-wise modulo of the input arrays with broadcasting.
mx.symbol.broadcast_mul broadcast_mul:Returns element-wise product of the input arrays with broadcasting.
mx.symbol.broadcast_not_equal broadcast_not_equal:Returns the result of element-wise **not equal to** (!=) comparison operation with broadcasting.
mx.symbol.broadcast_plus broadcast_plus:Returns element-wise sum of the input arrays with broadcasting.
mx.symbol.broadcast_power broadcast_power:Returns result of first array elements raised to powers from second array, element-wise with broadcasting.
mx.symbol.broadcast_sub broadcast_sub:Returns element-wise difference of the input arrays with broadcasting.
mx.symbol.broadcast_to broadcast_to:Broadcasts the input array to a new shape.
mx.symbol.Cast Cast:Casts all elements of the input to a new type.
mx.symbol.cast cast:Casts all elements of the input to a new type.
mx.symbol.cast_storage cast_storage:Casts tensor storage type to the new type.
mx.symbol.cbrt cbrt:Returns element-wise cube-root value of the input.
mx.symbol.ceil ceil:Returns element-wise ceiling of the input.
mx.symbol.choose_element_0index choose_element_0index:Picks elements from an input array according to the input indices along the given axis.
mx.symbol.clip clip:Clips (limits) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. Clipping "x" between 'a_min' and 'a_max' would be:: .. math:: clip(x, a_min, a_max) = \max(\min(x, a_max), a_min)) Example:: x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] clip(x,1,8) = [ 1., 1., 2., 3., 4., 5., 6., 7., 8., 8.] The storage type of "clip" output depends on storage types of inputs and the a_min, a_max \ parameter values: - clip(default) = default - clip(row_sparse, a_min <= 0, a_max >= 0) = row_sparse - clip(csr, a_min <= 0, a_max >= 0) = csr - clip(row_sparse, a_min < 0, a_max < 0) = default - clip(row_sparse, a_min > 0, a_max > 0) = default - clip(csr, a_min < 0, a_max < 0) = csr - clip(csr, a_min > 0, a_max > 0) = csr
mx.symbol.col2im col2im:Combining the output column matrix of im2col back to image array.
mx.symbol.Concat Perform an feature concat on channel dim (dim 1) over all the inputs.
mx.symbol.concat Perform an feature concat on channel dim (dim 1) over all the inputs.
mx.symbol.Convolution Convolution:Compute *N*-D convolution on *(N+2)*-D input.
mx.symbol.Convolution_v1 Convolution_v1:This operator is DEPRECATED. Apply convolution to input then add a bias.
mx.symbol.Correlation Correlation:Applies correlation to inputs.
mx.symbol.cos cos:Computes the element-wise cosine of the input array.
mx.symbol.cosh cosh:Returns the hyperbolic cosine of the input array, computed element-wise.
mx.symbol.Crop Crop:
mx.symbol.crop crop:Slices a region of the array. .. note:: "crop" is deprecated. Use "slice" instead. This function returns a sliced array between the indices given by 'begin' and 'end' with the corresponding 'step'. For an input array of "shape=(d_0, d_1, ..., d_n-1)", slice operation with "begin=(b_0, b_1...b_m-1)", "end=(e_0, e_1, ..., e_m-1)", and "step=(s_0, s_1, ..., s_m-1)", where m <= n, results in an array with the shape "(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-1)". The resulting array's *k*-th dimension contains elements from the *k*-th dimension of the input array starting from index "b_k" (inclusive) with step "s_k" until reaching "e_k" (exclusive). If the *k*-th elements are 'None' in the sequence of 'begin', 'end', and 'step', the following rule will be used to set default values. If 's_k' is 'None', set 's_k=1'. If 's_k > 0', set 'b_k=0', 'e_k=d_k'; else, set 'b_k=d_k-1', 'e_k=-1'. The storage type of "slice" output depends on storage types of inputs - slice(csr) = csr - otherwise, "slice" generates output with default storage .. note:: When input data storage type is csr, it only supports step=(), or step=(None,), or step=(1,) to generate a csr output. For other step parameter values, it falls back to slicing a dense tensor. Example:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice(x, begin=(0,1), end=(2,4)) = [[ 2., 3., 4.], [ 6., 7., 8.]] slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.], [5., 7.], [1., 3.]]
mx.symbol.CTCLoss CTCLoss:Connectionist Temporal Classification Loss.
mx.symbol.ctc_loss ctc_loss:Connectionist Temporal Classification Loss.
mx.symbol.cumsum cumsum:Return the cumulative sum of the elements along a given axis.
mx.symbol.Custom Custom:Apply a custom operator implemented in a frontend language (like Python).
mx.symbol.Deconvolution Deconvolution:Computes 1D or 2D transposed convolution (aka fractionally strided convolution) of the input tensor. This operation can be seen as the gradient of Convolution operation with respect to its input. Convolution usually reduces the size of the input. Transposed convolution works the other way, going from a smaller input to a larger output while preserving the connectivity pattern.
mx.symbol.degrees degrees:Converts each element of the input array from radians to degrees.
mx.symbol.depth_to_space depth_to_space:Rearranges(permutes) data from depth into blocks of spatial data. Similar to ONNX DepthToSpace operator: https://github.com/onnx/onnx/blob/master/docs/Operators.md#DepthToSpace. The output is a new tensor where the values from depth dimension are moved in spatial blocks to height and width dimension. The reverse of this operation is "space_to_depth". .. math:: \begingather* x \prime = reshape(x, [N, block\_size, block\_size, C / (block\_size ^ 2), H * block\_size, W * block\_size]) \ x \prime \prime = transpose(x \prime, [0, 3, 4, 1, 5, 2]) \ y = reshape(x \prime \prime, [N, C / (block\_size ^ 2), H * block\_size, W * block\_size]) \endgather* where :math:'x' is an input tensor with default layout as :math:'[N, C, H, W]': [batch, channels, height, width] and :math:'y' is the output tensor of layout :math:'[N, C / (block\_size ^ 2), H * block\_size, W * block\_size]' Example:: x = [[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]] depth_to_space(x, 2) = [[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15, 21, 16, 22, 17, 23]]]]
mx.symbol.diag diag:Extracts a diagonal or constructs a diagonal array.
mx.symbol.dot dot:Dot product of two arrays.
mx.symbol.Dropout Dropout:Applies dropout operation to input array.
mx.symbol.ElementWiseSum ElementWiseSum:Adds all input arguments element-wise.
mx.symbol.elemwise_add elemwise_add:Adds arguments element-wise.
mx.symbol.elemwise_div elemwise_div:Divides arguments element-wise.
mx.symbol.elemwise_mul elemwise_mul:Multiplies arguments element-wise.
mx.symbol.elemwise_sub elemwise_sub:Subtracts arguments element-wise.
mx.symbol.Embedding Embedding:Maps integer indices to vector representations (embeddings).
mx.symbol.erf erf:Returns element-wise gauss error function of the input.
mx.symbol.erfinv erfinv:Returns element-wise inverse gauss error function of the input.
mx.symbol.exp exp:Returns element-wise exponential value of the input.
mx.symbol.expand_dims expand_dims:Inserts a new axis of size 1 into the array shape For example, given "x" with shape "(2,3,4)", then "expand_dims(x, axis=1)" will return a new array with shape "(2,1,3,4)".
mx.symbol.expm1 expm1:Returns "exp(x) - 1" computed element-wise on the input.
mx.symbol.fill_element_0index fill_element_0index:Fill one element of each line(row for python, column for R/Julia) in lhs according to index indicated by rhs and values indicated by mhs. This function assume rhs uses 0-based index.
mx.symbol.fix fix:Returns element-wise rounded value to the nearest \ integer towards zero of the input.
mx.symbol.Flatten Flatten:Flattens the input array into a 2-D array by collapsing the higher dimensions. .. note:: 'Flatten' is deprecated. Use 'flatten' instead. For an input array with shape "(d1, d2, ..., dk)", 'flatten' operation reshapes the input array into an output array of shape "(d1, d2*...*dk)". Note that the behavior of this function is different from numpy.ndarray.flatten, which behaves similar to mxnet.ndarray.reshape((-1,)). Example:: x = [[ [1,2,3], [4,5,6], [7,8,9] ], [ [1,2,3], [4,5,6], [7,8,9] ]], flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
mx.symbol.flatten flatten:Flattens the input array into a 2-D array by collapsing the higher dimensions. .. note:: 'Flatten' is deprecated. Use 'flatten' instead. For an input array with shape "(d1, d2, ..., dk)", 'flatten' operation reshapes the input array into an output array of shape "(d1, d2*...*dk)". Note that the behavior of this function is different from numpy.ndarray.flatten, which behaves similar to mxnet.ndarray.reshape((-1,)). Example:: x = [[ [1,2,3], [4,5,6], [7,8,9] ], [ [1,2,3], [4,5,6], [7,8,9] ]], flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
mx.symbol.flip flip:Reverses the order of elements along given axis while preserving array shape. Note: reverse and flip are equivalent. We use reverse in the following examples. Examples:: x = [[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.]] reverse(x, axis=0) = [[ 5., 6., 7., 8., 9.], [ 0., 1., 2., 3., 4.]] reverse(x, axis=1) = [[ 4., 3., 2., 1., 0.], [ 9., 8., 7., 6., 5.]]
mx.symbol.floor floor:Returns element-wise floor of the input.
mx.symbol.ftml_update ftml_update:The FTML optimizer described in *FTML - Follow the Moving Leader in Deep Learning*, available at http://proceedings.mlr.press/v70/zheng17a/zheng17a.pdf.
mx.symbol.ftrl_update ftrl_update:Update function for Ftrl optimizer. Referenced from *Ad Click Prediction: a View from the Trenches*, available at http://dl.acm.org/citation.cfm?id=2488200.
mx.symbol.FullyConnected FullyConnected:Applies a linear transformation: :math:'Y = XW^T + b'.
mx.symbol.gamma gamma:Returns the gamma function (extension of the factorial function \ to the reals), computed element-wise on the input array.
mx.symbol.gammaln gammaln:Returns element-wise log of the absolute value of the gamma function \ of the input.
mx.symbol.gather_nd gather_nd:Gather elements or slices from 'data' and store to a tensor whose shape is defined by 'indices'.
mx.symbol.GridGenerator GridGenerator:Generates 2D sampling grid for bilinear sampling.
mx.symbol.Group Create a symbol that groups symbols together.
mx.symbol.GroupNorm GroupNorm:Group normalization.
mx.symbol.hard_sigmoid hard_sigmoid:Computes hard sigmoid of x element-wise.
mx.symbol.identity identity:Returns a copy of the input.
mx.symbol.IdentityAttachKLSparseReg IdentityAttachKLSparseReg:Apply a sparse regularization to the output a sigmoid activation function.
mx.symbol.im2col im2col:Extract sliding blocks from input array.
mx.symbol.infer.shape Inference the shape of arguments, outputs, and auxiliary states.
mx.symbol.InstanceNorm InstanceNorm:Applies instance normalization to the n-dimensional input array.
mx.symbol.khatri_rao khatri_rao:Computes the Khatri-Rao product of the input matrices.
mx.symbol.L2Normalization L2Normalization:Normalize the input array using the L2 norm.
mx.symbol.lamb_update_phase1 lamb_update_phase1:Phase I of lamb update it performs the following operations and returns g:.
mx.symbol.lamb_update_phase2 lamb_update_phase2:Phase II of lamb update it performs the following operations and updates grad.
mx.symbol.LayerNorm LayerNorm:Layer normalization.
mx.symbol.LeakyReLU LeakyReLU:Applies Leaky rectified linear unit activation element-wise to the input.
mx.symbol.linalg_det linalg_det:Compute the determinant of a matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_extractdiag linalg_extractdiag:Extracts the diagonal entries of a square matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_extracttrian linalg_extracttrian:Extracts a triangular sub-matrix from a square matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_gelqf linalg_gelqf:LQ factorization for general matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_gemm linalg_gemm:Performs general matrix multiplication and accumulation. Input are tensors *A*, *B*, *C*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.symbol.linalg_gemm2 linalg_gemm2:Performs general matrix multiplication. Input are tensors *A*, *B*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.symbol.linalg_inverse linalg_inverse:Compute the inverse of a matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_makediag linalg_makediag:Constructs a square matrix with the input as diagonal. Input is a tensor *A* of dimension *n >= 1*.
mx.symbol.linalg_maketrian linalg_maketrian:Constructs a square matrix with the input representing a specific triangular sub-matrix. This is basically the inverse of *linalg.extracttrian*. Input is a tensor *A* of dimension *n >= 1*.
mx.symbol.linalg_potrf linalg_potrf:Performs Cholesky factorization of a symmetric positive-definite matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_potri linalg_potri:Performs matrix inversion from a Cholesky factorization. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_slogdet linalg_slogdet:Compute the sign and log of the determinant of a matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_sumlogdiag linalg_sumlogdiag:Computes the sum of the logarithms of the diagonal elements of a square matrix. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_syrk linalg_syrk:Multiplication of matrix with its transpose. Input is a tensor *A* of dimension *n >= 2*.
mx.symbol.linalg_trmm linalg_trmm:Performs multiplication with a lower triangular matrix. Input are tensors *A*, *B*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.symbol.linalg_trsm linalg_trsm:Solves matrix equation involving a lower triangular matrix. Input are tensors *A*, *B*, each of dimension *n >= 2* and having the same shape on the leading *n-2* dimensions.
mx.symbol.LinearRegressionOutput LinearRegressionOutput:Computes and optimizes for squared loss during backward propagation. Just outputs "data" during forward propagation.
mx.symbol.load Load an mx.symbol object
mx.symbol.load.json Load an mx.symbol object from a json string
mx.symbol.log log:Returns element-wise Natural logarithmic value of the input.
mx.symbol.log10 log10:Returns element-wise Base-10 logarithmic value of the input.
mx.symbol.log1p log1p:Returns element-wise "log(1 + x)" value of the input.
mx.symbol.log2 log2:Returns element-wise Base-2 logarithmic value of the input.
mx.symbol.logical_not logical_not:Returns the result of logical NOT (!) function
mx.symbol.LogisticRegressionOutput LogisticRegressionOutput:Applies a logistic function to the input.
mx.symbol.log_softmax log_softmax:Computes the log softmax of the input. This is equivalent to computing softmax followed by log.
mx.symbol.LRN LRN:Applies local response normalization to the input.
mx.symbol.MAERegressionOutput MAERegressionOutput:Computes mean absolute error of the input.
mx.symbol.MakeLoss MakeLoss:Make your own loss function in network construction.
mx.symbol.make_loss make_loss:Make your own loss function in network construction.
mx.symbol.max max:Computes the max of array elements over given axes.
mx.symbol.max_axis max_axis:Computes the max of array elements over given axes.
mx.symbol.mean mean:Computes the mean of array elements over given axes.
mx.symbol.moments moments: Calculate the mean and variance of 'data'.
mx.symbol.mp_lamb_update_phase1 mp_lamb_update_phase1:Mixed Precision version of Phase I of lamb update it performs the following operations and returns g:.
mx.symbol.mp_lamb_update_phase2 mp_lamb_update_phase2:Mixed Precision version Phase II of lamb update it performs the following operations and updates grad.
mx.symbol.mp_nag_mom_update mp_nag_mom_update:Update function for multi-precision Nesterov Accelerated Gradient( NAG) optimizer.
mx.symbol.mp_sgd_mom_update mp_sgd_mom_update:Updater function for multi-precision sgd optimizer
mx.symbol.mp_sgd_update mp_sgd_update:Updater function for multi-precision sgd optimizer
mx.symbol.multi_all_finite multi_all_finite:Check if all the float numbers in all the arrays are finite (used for AMP)
mx.symbol.multi_lars multi_lars:Compute the LARS coefficients of multiple weights and grads from their sums of square"
mx.symbol.multi_mp_sgd_mom_update multi_mp_sgd_mom_update:Momentum update function for multi-precision Stochastic Gradient Descent (SGD) optimizer.
mx.symbol.multi_mp_sgd_update multi_mp_sgd_update:Update function for multi-precision Stochastic Gradient Descent (SDG) optimizer.
mx.symbol.multi_sgd_mom_update multi_sgd_mom_update:Momentum update function for Stochastic Gradient Descent (SGD) optimizer.
mx.symbol.multi_sgd_update multi_sgd_update:Update function for Stochastic Gradient Descent (SDG) optimizer.
mx.symbol.multi_sum_sq multi_sum_sq:Compute the sums of squares of multiple arrays
mx.symbol.nag_mom_update nag_mom_update:Update function for Nesterov Accelerated Gradient( NAG) optimizer. It updates the weights using the following formula,
mx.symbol.nanprod nanprod:Computes the product of array elements over given axes treating Not a Numbers ("NaN") as one.
mx.symbol.nansum nansum:Computes the sum of array elements over given axes treating Not a Numbers ("NaN") as zero.
mx.symbol.negative negative:Numerical negative of the argument, element-wise.
mx.symbol.norm norm:Computes the norm on an NDArray.
mx.symbol.normal normal:Draw random samples from a normal (Gaussian) distribution.
mx.symbol.ones_like ones_like:Return an array of ones with the same shape and type as the input array.
mx.symbol.one_hot one_hot:Returns a one-hot array.
mx.symbol.Pad Pad:Pads an input array with a constant or edge values of the array.
mx.symbol.pad pad:Pads an input array with a constant or edge values of the array.
mx.symbol.pick pick:Picks elements from an input array according to the input indices along the given axis.
mx.symbol.Pooling Pooling:Performs pooling on the input.
mx.symbol.Pooling_v1 Pooling_v1:This operator is DEPRECATED. Perform pooling on the input.
mx.symbol.preloaded_multi_mp_sgd_mom_update preloaded_multi_mp_sgd_mom_update:Momentum update function for multi-precision Stochastic Gradient Descent (SGD) optimizer.
mx.symbol.preloaded_multi_mp_sgd_update preloaded_multi_mp_sgd_update:Update function for multi-precision Stochastic Gradient Descent (SDG) optimizer.
mx.symbol.preloaded_multi_sgd_mom_update preloaded_multi_sgd_mom_update:Momentum update function for Stochastic Gradient Descent (SGD) optimizer.
mx.symbol.preloaded_multi_sgd_update preloaded_multi_sgd_update:Update function for Stochastic Gradient Descent (SDG) optimizer.
mx.symbol.prod prod:Computes the product of array elements over given axes.
mx.symbol.radians radians:Converts each element of the input array from degrees to radians.
mx.symbol.random_exponential random_exponential:Draw random samples from an exponential distribution.
mx.symbol.random_gamma random_gamma:Draw random samples from a gamma distribution.
mx.symbol.random_generalized_negative_binomial random_generalized_negative_binomial:Draw random samples from a generalized negative binomial distribution.
mx.symbol.random_negative_binomial random_negative_binomial:Draw random samples from a negative binomial distribution.
mx.symbol.random_normal random_normal:Draw random samples from a normal (Gaussian) distribution.
mx.symbol.random_pdf_dirichlet random_pdf_dirichlet:Computes the value of the PDF of *sample* of Dirichlet distributions with parameter *alpha*.
mx.symbol.random_pdf_exponential random_pdf_exponential:Computes the value of the PDF of *sample* of exponential distributions with parameters *lam* (rate).
mx.symbol.random_pdf_gamma random_pdf_gamma:Computes the value of the PDF of *sample* of gamma distributions with parameters *alpha* (shape) and *beta* (rate).
mx.symbol.random_pdf_generalized_negative_binomial random_pdf_generalized_negative_binomial:Computes the value of the PDF of *sample* of generalized negative binomial distributions with parameters *mu* (mean) and *alpha* (dispersion). This can be understood as a reparameterization of the negative binomial, where *k* = *1 / alpha* and *p* = *1 / (mu \* alpha + 1)*.
mx.symbol.random_pdf_negative_binomial random_pdf_negative_binomial:Computes the value of the PDF of samples of negative binomial distributions with parameters *k* (failure limit) and *p* (failure probability).
mx.symbol.random_pdf_normal random_pdf_normal:Computes the value of the PDF of *sample* of normal distributions with parameters *mu* (mean) and *sigma* (standard deviation).
mx.symbol.random_pdf_poisson random_pdf_poisson:Computes the value of the PDF of *sample* of Poisson distributions with parameters *lam* (rate).
mx.symbol.random_pdf_uniform random_pdf_uniform:Computes the value of the PDF of *sample* of uniform distributions on the intervals given by *[low,high)*.
mx.symbol.random_poisson random_poisson:Draw random samples from a Poisson distribution.
mx.symbol.random_randint random_randint:Draw random samples from a discrete uniform distribution.
mx.symbol.random_uniform random_uniform:Draw random samples from a uniform distribution.
mx.symbol.ravel_multi_index ravel_multi_index:Converts a batch of index arrays into an array of flat indices. The operator follows numpy conventions so a single multi index is given by a column of the input matrix. The leading dimension may be left unspecified by using -1 as placeholder.
mx.symbol.rcbrt rcbrt:Returns element-wise inverse cube-root value of the input.
mx.symbol.reciprocal reciprocal:Returns the reciprocal of the argument, element-wise.
mx.symbol.relu relu:Computes rectified linear activation.
mx.symbol.repeat repeat:Repeats elements of an array. By default, "repeat" flattens the input array into 1-D and then repeats the elements:: x = [[ 1, 2], [ 3, 4]] repeat(x, repeats=2) = [ 1., 1., 2., 2., 3., 3., 4., 4.] The parameter "axis" specifies the axis along which to perform repeat:: repeat(x, repeats=2, axis=1) = [[ 1., 1., 2., 2.], [ 3., 3., 4., 4.]] repeat(x, repeats=2, axis=0) = [[ 1., 2.], [ 1., 2.], [ 3., 4.], [ 3., 4.]] repeat(x, repeats=2, axis=-1) = [[ 1., 1., 2., 2.], [ 3., 3., 4., 4.]]
mx.symbol.reset_arrays reset_arrays:Set to zero multiple arrays
mx.symbol.Reshape Reshape:Reshapes the input array. .. note:: "Reshape" is deprecated, use "reshape" Given an array and a shape, this function returns a copy of the array in the new shape. The shape is a tuple of integers such as (2,3,4). The size of the new shape should be same as the size of the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]] Some dimensions of the shape can take special values from the set 0, -1, -2, -3, -4. The significance of each is explained below: - "0" copy this dimension from the input to the output shape. Example:: - input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - "-1" infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1. Example:: - input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape = (2,3,4), shape=(-1,), output shape = (24,) - "-2" copy all/remainder of the input dimensions to the output shape. Example:: - input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1) - "-3" use the product of two consecutive dimensions of the input shape as the output dimension. Example:: - input shape = (2,3,4), shape = (-3,4), output shape = (6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - "-4" split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1). Example:: - input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument 'reverse' is set to 1, then the special values are inferred from right to left. Example:: - without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5) - with reverse=1, output shape will be (50,4).
mx.symbol.reshape reshape:Reshapes the input array. .. note:: "Reshape" is deprecated, use "reshape" Given an array and a shape, this function returns a copy of the array in the new shape. The shape is a tuple of integers such as (2,3,4). The size of the new shape should be same as the size of the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]] Some dimensions of the shape can take special values from the set 0, -1, -2, -3, -4. The significance of each is explained below: - "0" copy this dimension from the input to the output shape. Example:: - input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - "-1" infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1. Example:: - input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape = (2,3,4), shape=(-1,), output shape = (24,) - "-2" copy all/remainder of the input dimensions to the output shape. Example:: - input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1) - "-3" use the product of two consecutive dimensions of the input shape as the output dimension. Example:: - input shape = (2,3,4), shape = (-3,4), output shape = (6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - "-4" split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1). Example:: - input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument 'reverse' is set to 1, then the special values are inferred from right to left. Example:: - without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5) - with reverse=1, output shape will be (50,4).
mx.symbol.reshape_like reshape_like:Reshape some or all dimensions of 'lhs' to have the same shape as some or all dimensions of 'rhs'.
mx.symbol.reverse reverse:Reverses the order of elements along given axis while preserving array shape. Note: reverse and flip are equivalent. We use reverse in the following examples. Examples:: x = [[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.]] reverse(x, axis=0) = [[ 5., 6., 7., 8., 9.], [ 0., 1., 2., 3., 4.]] reverse(x, axis=1) = [[ 4., 3., 2., 1., 0.], [ 9., 8., 7., 6., 5.]]
mx.symbol.rint rint:Returns element-wise rounded value to the nearest integer of the input.
mx.symbol.rmspropalex_update rmspropalex_update:Update function for RMSPropAlex optimizer.
mx.symbol.rmsprop_update rmsprop_update:Update function for 'RMSProp' optimizer.
mx.symbol.RNN RNN:Applies recurrent layers to input data. Currently, vanilla RNN, LSTM and GRU are implemented, with both multi-layer and bidirectional support.
mx.symbol.ROIPooling ROIPooling:Performs region of interest(ROI) pooling on the input array.
mx.symbol.round round:Returns element-wise rounded value to the nearest integer of the input.
mx.symbol.rsqrt rsqrt:Returns element-wise inverse square-root value of the input.
mx.symbol.sample_exponential sample_exponential:Concurrent sampling from multiple exponential distributions with parameters lambda (rate).
mx.symbol.sample_gamma sample_gamma:Concurrent sampling from multiple gamma distributions with parameters *alpha* (shape) and *beta* (scale).
mx.symbol.sample_generalized_negative_binomial sample_generalized_negative_binomial:Concurrent sampling from multiple generalized negative binomial distributions with parameters *mu* (mean) and *alpha* (dispersion).
mx.symbol.sample_multinomial sample_multinomial:Concurrent sampling from multiple multinomial distributions.
mx.symbol.sample_negative_binomial sample_negative_binomial:Concurrent sampling from multiple negative binomial distributions with parameters *k* (failure limit) and *p* (failure probability).
mx.symbol.sample_normal sample_normal:Concurrent sampling from multiple normal distributions with parameters *mu* (mean) and *sigma* (standard deviation).
mx.symbol.sample_poisson sample_poisson:Concurrent sampling from multiple Poisson distributions with parameters lambda (rate).
mx.symbol.sample_uniform sample_uniform:Concurrent sampling from multiple uniform distributions on the intervals given by *[low,high)*.
mx.symbol.save Save an mx.symbol object
mx.symbol.scatter_nd scatter_nd:Scatters data into a new tensor according to indices.
mx.symbol.SequenceLast SequenceLast:Takes the last element of a sequence.
mx.symbol.SequenceMask SequenceMask:Sets all elements outside the sequence to a constant value.
mx.symbol.SequenceReverse SequenceReverse:Reverses the elements of each sequence.
mx.symbol.sgd_mom_update sgd_mom_update:Momentum update function for Stochastic Gradient Descent (SGD) optimizer.
mx.symbol.sgd_update sgd_update:Update function for Stochastic Gradient Descent (SGD) optimizer.
mx.symbol.shape_array shape_array:Returns a 1D int64 array containing the shape of data.
mx.symbol.shuffle shuffle:Randomly shuffle the elements.
mx.symbol.sigmoid sigmoid:Computes sigmoid of x element-wise.
mx.symbol.sign sign:Returns element-wise sign of the input.
mx.symbol.signsgd_update signsgd_update:Update function for SignSGD optimizer.
mx.symbol.signum_update signum_update:SIGN momentUM (Signum) optimizer.
mx.symbol.sin sin:Computes the element-wise sine of the input array.
mx.symbol.sinh sinh:Returns the hyperbolic sine of the input array, computed element-wise.
mx.symbol.size_array size_array:Returns a 1D int64 array containing the size of data.
mx.symbol.slice slice:Slices a region of the array. .. note:: "crop" is deprecated. Use "slice" instead. This function returns a sliced array between the indices given by 'begin' and 'end' with the corresponding 'step'. For an input array of "shape=(d_0, d_1, ..., d_n-1)", slice operation with "begin=(b_0, b_1...b_m-1)", "end=(e_0, e_1, ..., e_m-1)", and "step=(s_0, s_1, ..., s_m-1)", where m <= n, results in an array with the shape "(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-1)". The resulting array's *k*-th dimension contains elements from the *k*-th dimension of the input array starting from index "b_k" (inclusive) with step "s_k" until reaching "e_k" (exclusive). If the *k*-th elements are 'None' in the sequence of 'begin', 'end', and 'step', the following rule will be used to set default values. If 's_k' is 'None', set 's_k=1'. If 's_k > 0', set 'b_k=0', 'e_k=d_k'; else, set 'b_k=d_k-1', 'e_k=-1'. The storage type of "slice" output depends on storage types of inputs - slice(csr) = csr - otherwise, "slice" generates output with default storage .. note:: When input data storage type is csr, it only supports step=(), or step=(None,), or step=(1,) to generate a csr output. For other step parameter values, it falls back to slicing a dense tensor. Example:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice(x, begin=(0,1), end=(2,4)) = [[ 2., 3., 4.], [ 6., 7., 8.]] slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.], [5., 7.], [1., 3.]]
mx.symbol.SliceChannel SliceChannel:Splits an array along a particular axis into multiple sub-arrays.
mx.symbol.slice_axis slice_axis:Slices along a given axis. Returns an array slice along a given 'axis' starting from the 'begin' index to the 'end' index. Examples:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice_axis(x, axis=0, begin=1, end=3) = [[ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice_axis(x, axis=1, begin=0, end=2) = [[ 1., 2.], [ 5., 6.], [ 9., 10.]] slice_axis(x, axis=1, begin=-3, end=-1) = [[ 2., 3.], [ 6., 7.], [ 10., 11.]]
mx.symbol.slice_like slice_like:Slices a region of the array like the shape of another array. This function is similar to "slice", however, the 'begin' are always '0's and 'end' of specific axes are inferred from the second input 'shape_like'. Given the second 'shape_like' input of "shape=(d_0, d_1, ..., d_n-1)", a "slice_like" operator with default empty 'axes', it performs the following operation: " out = slice(input, begin=(0, 0, ..., 0), end=(d_0, d_1, ..., d_n-1))". When 'axes' is not empty, it is used to speficy which axes are being sliced. Given a 4-d input data, "slice_like" operator with "axes=(0, 2, -1)" will perform the following operation: " out = slice(input, begin=(0, 0, 0, 0), end=(d_0, None, d_2, d_3))". Note that it is allowed to have first and second input with different dimensions, however, you have to make sure the 'axes' are specified and not exceeding the dimension limits. For example, given 'input_1' with "shape=(2,3,4,5)" and 'input_2' with "shape=(1,2,3)", it is not allowed to use: " out = slice_like(a, b)" because ndim of 'input_1' is 4, and ndim of 'input_2' is 3. The following is allowed in this situation: " out = slice_like(a, b, axes=(0, 2))" Example:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] y = [[ 0., 0., 0.], [ 0., 0., 0.]] slice_like(x, y) = [[ 1., 2., 3.] [ 5., 6., 7.]] slice_like(x, y, axes=(0, 1)) = [[ 1., 2., 3.] [ 5., 6., 7.]] slice_like(x, y, axes=(0)) = [[ 1., 2., 3., 4.] [ 5., 6., 7., 8.]] slice_like(x, y, axes=(-1)) = [[ 1., 2., 3.] [ 5., 6., 7.] [ 9., 10., 11.]]
mx.symbol.smooth_l1 smooth_l1:Calculate Smooth L1 Loss(lhs, scalar) by summing
mx.symbol.Softmax Softmax:Computes the gradient of cross entropy loss with respect to softmax output.
mx.symbol.softmax softmax:Applies the softmax function.
mx.symbol.SoftmaxActivation SoftmaxActivation:Applies softmax activation to input. This is intended for internal layers.
mx.symbol.SoftmaxOutput SoftmaxOutput:Computes the gradient of cross entropy loss with respect to softmax output.
mx.symbol.softmax_cross_entropy softmax_cross_entropy:Calculate cross entropy of softmax output and one-hot label.
mx.symbol.softmin softmin:Applies the softmin function.
mx.symbol.softsign softsign:Computes softsign of x element-wise.
mx.symbol.sort sort:Returns a sorted copy of an input array along the given axis.
mx.symbol.space_to_depth space_to_depth:Rearranges(permutes) blocks of spatial data into depth. Similar to ONNX SpaceToDepth operator: https://github.com/onnx/onnx/blob/master/docs/Operators.md#SpaceToDepth The output is a new tensor where the values from height and width dimension are moved to the depth dimension. The reverse of this operation is "depth_to_space". .. math:: \begingather* x \prime = reshape(x, [N, C, H / block\_size, block\_size, W / block\_size, block\_size]) \ x \prime \prime = transpose(x \prime, [0, 3, 5, 1, 2, 4]) \ y = reshape(x \prime \prime, [N, C * (block\_size ^ 2), H / block\_size, W / block\_size]) \endgather* where :math:'x' is an input tensor with default layout as :math:'[N, C, H, W]': [batch, channels, height, width] and :math:'y' is the output tensor of layout :math:'[N, C * (block\_size ^ 2), H / block\_size, W / block\_size]' Example:: x = [[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15, 21, 16, 22, 17, 23]]]] space_to_depth(x, 2) = [[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]]
mx.symbol.SpatialTransformer SpatialTransformer:Applies a spatial transformer to input feature map.
mx.symbol.split split:Splits an array along a particular axis into multiple sub-arrays.
mx.symbol.sqrt sqrt:Returns element-wise square-root value of the input.
mx.symbol.square square:Returns element-wise squared value of the input.
mx.symbol.squeeze squeeze:Remove single-dimensional entries from the shape of an array. Same behavior of defining the output tensor shape as numpy.squeeze for the most of cases. See the following note for exception. Examples:: data = [[[0], [1], [2]]] squeeze(data) = [0, 1, 2] squeeze(data, axis=0) = [[0], [1], [2]] squeeze(data, axis=2) = [[0, 1, 2]] squeeze(data, axis=(0, 2)) = [0, 1, 2] .. Note:: The output of this operator will keep at least one dimension not removed. For example, squeeze([[[4]]]) = [4], while in numpy.squeeze, the output will become a scalar.
mx.symbol.stack stack:Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0 it will be the first dimension and if axis=-1 it will be the last dimension. Examples:: x = [1, 2] y = [3, 4] stack(x, y) = [[1, 2], [3, 4]] stack(x, y, axis=1) = [[1, 3], [2, 4]]
mx.symbol.stop_gradient stop_gradient:Stops gradient computation.
mx.symbol.sum sum:Computes the sum of array elements over given axes.
mx.symbol.sum_axis sum_axis:Computes the sum of array elements over given axes.
mx.symbol.SVMOutput SVMOutput:Computes support vector machine based transformation of the input.
mx.symbol.swapaxes swapaxes:Interchanges two axes of an array.
mx.symbol.SwapAxis SwapAxis:Interchanges two axes of an array.
mx.symbol.take take:Takes elements from an input array along the given axis.
mx.symbol.tan tan:Computes the element-wise tangent of the input array.
mx.symbol.tanh tanh:Returns the hyperbolic tangent of the input array, computed element-wise.
mx.symbol.tile tile:Repeats the whole array multiple times. If "reps" has length *d*, and input array has dimension of *n*. There are three cases: - **n=d**. Repeat *i*-th dimension of the input by "reps[i]" times:: x = [[1, 2], [3, 4]] tile(x, reps=(2,3)) = [[ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.], [ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.]] - **n>d**. "reps" is promoted to length *n* by pre-pending 1's to it. Thus for an input shape "(2,3)", "repos=(2,)" is treated as "(1,2)":: tile(x, reps=(2,)) = [[ 1., 2., 1., 2.], [ 3., 4., 3., 4.]] - **n<d**. The input is promoted to be d-dimensional by prepending new axes. So a shape "(2,2)" array is promoted to "(1,2,2)" for 3-D replication:: tile(x, reps=(2,2,3)) = [[[ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.], [ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.]], [[ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.], [ 1., 2., 1., 2., 1., 2.], [ 3., 4., 3., 4., 3., 4.]]]
mx.symbol.topk topk:Returns the indices of the top *k* elements in an input array along the given axis (by default). If ret_type is set to 'value' returns the value of top *k* elements (instead of indices). In case of ret_type = 'both', both value and index would be returned. The returned elements will be sorted.
mx.symbol.transpose transpose:Permutes the dimensions of an array. Examples:: x = [[ 1, 2], [ 3, 4]] transpose(x) = [[ 1., 3.], [ 2., 4.]] x = [[[ 1., 2.], [ 3., 4.]], [[ 5., 6.], [ 7., 8.]]] transpose(x) = [[[ 1., 5.], [ 3., 7.]], [[ 2., 6.], [ 4., 8.]]] transpose(x, axes=(1,0,2)) = [[[ 1., 2.], [ 5., 6.]], [[ 3., 4.], [ 7., 8.]]]
mx.symbol.trunc trunc:Return the element-wise truncated value of the input.
mx.symbol.uniform uniform:Draw random samples from a uniform distribution.
mx.symbol.unravel_index unravel_index:Converts an array of flat indices into a batch of index arrays. The operator follows numpy conventions so a single multi index is given by a column of the output matrix. The leading dimension may be left unspecified by using -1 as placeholder.
mx.symbol.UpSampling UpSampling:Upsamples the given input data.
mx.symbol.Variable Create a symbolic variable with specified name.
mx.symbol.where where:Return the elements, either from x or y, depending on the condition.
mx.symbol.zeros_like zeros_like:Return an array of zeros with the same shape, type and storage type as the input array.
mx.unserialize Unserialize MXNet model from Robject.
mxnet MXNet: Flexible and Efficient GPU computing and Deep Learning.
mxnet.export Internal function to generate mxnet_generated.R Users do not need to call this function.

-- O --

Ops.MXNDArray Binary operator overloading of mx.ndarray
outputs Get the outputs of a symbol.

-- P --

predict.MXFeedForwardModel Predict the outputs given a model and dataset.
print.MXNDArray print operator overload of mx.ndarray

-- R --

rnn.graph Generate a RNN symbolic model - requires CUDA
rnn.graph.unroll Unroll representation of RNN running on non CUDA device