dune-istl 3.0-git
Public Types | Public Member Functions | Protected Attributes | List of all members
Dune::BlockVectorWindow< B, A > Class Template Reference

#include <dune/istl/bvector.hh>

Inheritance diagram for Dune::BlockVectorWindow< B, A >:
Inheritance graph

Public Types

enum  { blocklevel = B::blocklevel+1 }
 increment block level counter More...
 
typedef B::field_type field_type
 export the type representing the field
 
typedefblock_type
 export the type representing the components
 
typedefallocator_type
 export the allocator type
 
typedef A::size_type size_type
 The type for the index access.
 
typedef block_vector_unmanaged< B, A >::Iterator Iterator
 make iterators available as types
 
typedef block_vector_unmanaged< B, A >::ConstIterator ConstIterator
 make iterators available as types
 
typedefvalue_type
 for STL compatibility
 
typedef B & reference
 Type used for references.
 
typedef const B & const_reference
 Type used for const references.
 
typedefmember_type
 export the type representing the components
 
typedef RealIterator< B > iterator
 iterator type for sequential access
 
typedef RealIterator< const B > const_iterator
 iterator class for sequential access
 

Public Member Functions

 BlockVectorWindow ()
 makes empty array
 
 BlockVectorWindow (B *_p, size_type _n)
 make array from given pointer and size
 
 BlockVectorWindow (const BlockVectorWindow &a)
 copy constructor, this has reference semantics!
 
 BlockVectorWindow (const block_vector_unmanaged< B, A > &_a)
 construct from base class object with reference semantics!
 
BlockVectorWindowoperator= (const BlockVectorWindow &a)
 assignment
 
BlockVectorWindowoperator= (const block_vector_unmanaged< B, A > &a)
 assign from base class object
 
BlockVectorWindowoperator= (const field_type &k)
 assign from scalar
 
void set (size_type _n, B *_p)
 set size and pointer
 
void setsize (size_type _n)
 set size only
 
void setptr (B *_p)
 set pointer only
 
B * getptr ()
 get pointer
 
size_type getsize ()
 get size
 
block_vector_unmanagedoperator+= (const block_vector_unmanaged &y)
 vector space addition
 
block_vector_unmanagedoperator-= (const block_vector_unmanaged &y)
 vector space subtraction
 
block_vector_unmanagedoperator*= (const field_type &k)
 vector space multiplication with scalar
 
block_vector_unmanagedoperator/= (const field_type &k)
 vector space division by scalar
 
block_vector_unmanagedaxpy (const field_type &a, const block_vector_unmanaged &y)
 vector space axpy operation
 
template<class OtherB , class OtherA >
PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType operator* (const block_vector_unmanaged< OtherB, OtherA > &y) const
 indefinite vector dot product $\left (x^T \cdot y \right)$ which corresponds to Petsc's VecTDot
 
template<class OtherB , class OtherA >
PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType dot (const block_vector_unmanaged< OtherB, OtherA > &y) const
 vector dot product $\left (x^H \cdot y \right)$ which corresponds to Petsc's VecDot
 
FieldTraits< field_type >::real_type one_norm () const
 one norm (sum over absolute values of entries)
 
FieldTraits< field_type >::real_type one_norm_real () const
 simplified one norm (uses Manhattan norm for complex values)
 
FieldTraits< field_type >::real_type two_norm () const
 two norm sqrt(sum over squared values of entries)
 
FieldTraits< field_type >::real_type two_norm2 () const
 Square of the two-norm (the sum over the squared values of the entries)
 
template<typename ft = field_type, typename std::enable_if<!has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type infinity_norm () const
 infinity norm (maximum of absolute values of entries)
 
template<typename ft = field_type, typename std::enable_if< has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type infinity_norm () const
 infinity norm (maximum of absolute values of entries)
 
template<typename ft = field_type, typename std::enable_if<!has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type infinity_norm_real () const
 simplified infinity norm (uses Manhattan norm for complex values)
 
template<typename ft = field_type, typename std::enable_if< has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type infinity_norm_real () const
 simplified infinity norm (uses Manhattan norm for complex values)
 
size_type N () const
 number of blocks in the vector (are of size 1 here)
 
size_type dim () const
 dimension of the vector space
 
B & operator[] (size_type i)
 random access to blocks
 
const B & operator[] (size_type i) const
 same for read only access
 
iterator begin ()
 begin iterator
 
const_iterator begin () const
 begin const_iterator
 
iterator end ()
 end iterator
 
const_iterator end () const
 end const_iterator
 
iterator beforeEnd ()
 
const_iterator beforeEnd () const
 
iterator beforeBegin ()
 
const_iterator beforeBegin () const
 
iterator find (size_type i)
 random access returning iterator (end if not contained)
 
const_iterator find (size_type i) const
 random access returning iterator (end if not contained)
 
size_type size () const
 number of blocks in the array (are of size 1 here)
 

Protected Attributes

size_type n
 
B * p
 

Detailed Description

template<class B, class A = std::allocator<B>>
class Dune::BlockVectorWindow< B, A >

BlockVectorWindow adds window manipulation functions to the block_vector_unmanaged template.

This class has no memory management. It assumes that the storage for the entries of the vector is maintained outside of this class.

But you can copy objects of this class and of the base class with reference semantics.

Assignment copies the data, if the format is incompatible with

the argument an exception is thrown in debug mode.

Error checking: no error checking is provided normally.
Setting the compile time switch DUNE_ISTL_WITH_CHECKING
enables error checking.

Member Typedef Documentation

◆ allocator_type

template<class B , class A = std::allocator<B>>
typedef A Dune::BlockVectorWindow< B, A >::allocator_type

export the allocator type

◆ block_type

template<class B , class A = std::allocator<B>>
typedef B Dune::BlockVectorWindow< B, A >::block_type

export the type representing the components

◆ const_iterator

template<class B , class A = std::allocator<B>>
typedef RealIterator<const B> Dune::base_array_unmanaged< B, A >::const_iterator
inherited

iterator class for sequential access

◆ const_reference

template<class B , class A = std::allocator<B>>
typedef const B& Dune::block_vector_unmanaged< B, A >::const_reference
inherited

Type used for const references.

◆ ConstIterator

template<class B , class A = std::allocator<B>>
typedef block_vector_unmanaged<B,A>::ConstIterator Dune::BlockVectorWindow< B, A >::ConstIterator

make iterators available as types

◆ field_type

template<class B , class A = std::allocator<B>>
typedef B::field_type Dune::BlockVectorWindow< B, A >::field_type

export the type representing the field

◆ iterator

template<class B , class A = std::allocator<B>>
typedef RealIterator<B> Dune::base_array_unmanaged< B, A >::iterator
inherited

iterator type for sequential access

◆ Iterator

template<class B , class A = std::allocator<B>>
typedef block_vector_unmanaged<B,A>::Iterator Dune::BlockVectorWindow< B, A >::Iterator

make iterators available as types

◆ member_type

template<class B , class A = std::allocator<B>>
typedef B Dune::base_array_unmanaged< B, A >::member_type
inherited

export the type representing the components

◆ reference

template<class B , class A = std::allocator<B>>
typedef B& Dune::block_vector_unmanaged< B, A >::reference
inherited

Type used for references.

◆ size_type

template<class B , class A = std::allocator<B>>
typedef A::size_type Dune::BlockVectorWindow< B, A >::size_type

The type for the index access.

◆ value_type

template<class B , class A = std::allocator<B>>
typedef B Dune::block_vector_unmanaged< B, A >::value_type
inherited

for STL compatibility

Member Enumeration Documentation

◆ anonymous enum

template<class B , class A = std::allocator<B>>
anonymous enum

increment block level counter

Enumerator
blocklevel 

The number of blocklevels we contain.

Constructor & Destructor Documentation

◆ BlockVectorWindow() [1/4]

template<class B , class A = std::allocator<B>>
Dune::BlockVectorWindow< B, A >::BlockVectorWindow ( )
inline

makes empty array

◆ BlockVectorWindow() [2/4]

template<class B , class A = std::allocator<B>>
Dune::BlockVectorWindow< B, A >::BlockVectorWindow ( B *  _p,
size_type  _n 
)
inline

make array from given pointer and size

◆ BlockVectorWindow() [3/4]

template<class B , class A = std::allocator<B>>
Dune::BlockVectorWindow< B, A >::BlockVectorWindow ( const BlockVectorWindow< B, A > &  a)
inline

copy constructor, this has reference semantics!

◆ BlockVectorWindow() [4/4]

template<class B , class A = std::allocator<B>>
Dune::BlockVectorWindow< B, A >::BlockVectorWindow ( const block_vector_unmanaged< B, A > &  _a)
inline

construct from base class object with reference semantics!

Member Function Documentation

◆ axpy()

template<class B , class A = std::allocator<B>>
block_vector_unmanaged & Dune::block_vector_unmanaged< B, A >::axpy ( const field_type a,
const block_vector_unmanaged< B, A > &  y 
)
inlineinherited

vector space axpy operation

◆ beforeBegin() [1/2]

template<class B , class A = std::allocator<B>>
iterator Dune::base_array_unmanaged< B, A >::beforeBegin ( )
inlineinherited
Returns
an iterator that is positioned before the first entry of the vector.

◆ beforeBegin() [2/2]

template<class B , class A = std::allocator<B>>
const_iterator Dune::base_array_unmanaged< B, A >::beforeBegin ( ) const
inlineinherited
Returns
an iterator that is positioned before the first entry of the vector.

◆ beforeEnd() [1/2]

template<class B , class A = std::allocator<B>>
iterator Dune::base_array_unmanaged< B, A >::beforeEnd ( )
inlineinherited
Returns
an iterator that is positioned before the end iterator of the vector, i.e. at the last entry.

◆ beforeEnd() [2/2]

template<class B , class A = std::allocator<B>>
const_iterator Dune::base_array_unmanaged< B, A >::beforeEnd ( ) const
inlineinherited
Returns
an iterator that is positioned before the end iterator of the vector. i.e. at the last element.

◆ begin() [1/2]

template<class B , class A = std::allocator<B>>
iterator Dune::base_array_unmanaged< B, A >::begin ( )
inlineinherited

begin iterator

◆ begin() [2/2]

template<class B , class A = std::allocator<B>>
const_iterator Dune::base_array_unmanaged< B, A >::begin ( ) const
inlineinherited

begin const_iterator

◆ dim()

template<class B , class A = std::allocator<B>>
size_type Dune::block_vector_unmanaged< B, A >::dim ( ) const
inlineinherited

dimension of the vector space

◆ dot()

template<class B , class A = std::allocator<B>>
template<class OtherB , class OtherA >
PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType Dune::block_vector_unmanaged< B, A >::dot ( const block_vector_unmanaged< OtherB, OtherA > &  y) const
inlineinherited

vector dot product $\left (x^H \cdot y \right)$ which corresponds to Petsc's VecDot

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDot.html

Parameters
yother (compatible) vector
Returns

◆ end() [1/2]

template<class B , class A = std::allocator<B>>
iterator Dune::base_array_unmanaged< B, A >::end ( )
inlineinherited

end iterator

◆ end() [2/2]

template<class B , class A = std::allocator<B>>
const_iterator Dune::base_array_unmanaged< B, A >::end ( ) const
inlineinherited

end const_iterator

◆ find() [1/2]

template<class B , class A = std::allocator<B>>
iterator Dune::base_array_unmanaged< B, A >::find ( size_type  i)
inlineinherited

random access returning iterator (end if not contained)

◆ find() [2/2]

template<class B , class A = std::allocator<B>>
const_iterator Dune::base_array_unmanaged< B, A >::find ( size_type  i) const
inlineinherited

random access returning iterator (end if not contained)

◆ getptr()

template<class B , class A = std::allocator<B>>
B * Dune::BlockVectorWindow< B, A >::getptr ( )
inline

get pointer

◆ getsize()

template<class B , class A = std::allocator<B>>
size_type Dune::BlockVectorWindow< B, A >::getsize ( )
inline

get size

◆ infinity_norm() [1/2]

template<class B , class A = std::allocator<B>>
template<typename ft = field_type, typename std::enable_if<!has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type Dune::block_vector_unmanaged< B, A >::infinity_norm ( ) const
inlineinherited

infinity norm (maximum of absolute values of entries)

◆ infinity_norm() [2/2]

template<class B , class A = std::allocator<B>>
template<typename ft = field_type, typename std::enable_if< has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type Dune::block_vector_unmanaged< B, A >::infinity_norm ( ) const
inlineinherited

infinity norm (maximum of absolute values of entries)

◆ infinity_norm_real() [1/2]

template<class B , class A = std::allocator<B>>
template<typename ft = field_type, typename std::enable_if<!has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type Dune::block_vector_unmanaged< B, A >::infinity_norm_real ( ) const
inlineinherited

simplified infinity norm (uses Manhattan norm for complex values)

◆ infinity_norm_real() [2/2]

template<class B , class A = std::allocator<B>>
template<typename ft = field_type, typename std::enable_if< has_nan< ft >::value, int >::type = 0>
FieldTraits< ft >::real_type Dune::block_vector_unmanaged< B, A >::infinity_norm_real ( ) const
inlineinherited

simplified infinity norm (uses Manhattan norm for complex values)

◆ N()

template<class B , class A = std::allocator<B>>
size_type Dune::block_vector_unmanaged< B, A >::N ( ) const
inlineinherited

number of blocks in the vector (are of size 1 here)

◆ one_norm()

template<class B , class A = std::allocator<B>>
FieldTraits< field_type >::real_type Dune::block_vector_unmanaged< B, A >::one_norm ( ) const
inlineinherited

one norm (sum over absolute values of entries)

◆ one_norm_real()

template<class B , class A = std::allocator<B>>
FieldTraits< field_type >::real_type Dune::block_vector_unmanaged< B, A >::one_norm_real ( ) const
inlineinherited

simplified one norm (uses Manhattan norm for complex values)

◆ operator*()

template<class B , class A = std::allocator<B>>
template<class OtherB , class OtherA >
PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType Dune::block_vector_unmanaged< B, A >::operator* ( const block_vector_unmanaged< OtherB, OtherA > &  y) const
inlineinherited

indefinite vector dot product $\left (x^T \cdot y \right)$ which corresponds to Petsc's VecTDot

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecTDot.html

Parameters
yother (compatible) vector
Returns

◆ operator*=()

template<class B , class A = std::allocator<B>>
block_vector_unmanaged & Dune::block_vector_unmanaged< B, A >::operator*= ( const field_type k)
inlineinherited

vector space multiplication with scalar

◆ operator+=()

template<class B , class A = std::allocator<B>>
block_vector_unmanaged & Dune::block_vector_unmanaged< B, A >::operator+= ( const block_vector_unmanaged< B, A > &  y)
inlineinherited

vector space addition

◆ operator-=()

template<class B , class A = std::allocator<B>>
block_vector_unmanaged & Dune::block_vector_unmanaged< B, A >::operator-= ( const block_vector_unmanaged< B, A > &  y)
inlineinherited

vector space subtraction

◆ operator/=()

template<class B , class A = std::allocator<B>>
block_vector_unmanaged & Dune::block_vector_unmanaged< B, A >::operator/= ( const field_type k)
inlineinherited

vector space division by scalar

◆ operator=() [1/3]

template<class B , class A = std::allocator<B>>
BlockVectorWindow & Dune::BlockVectorWindow< B, A >::operator= ( const block_vector_unmanaged< B, A > &  a)
inline

assign from base class object

◆ operator=() [2/3]

template<class B , class A = std::allocator<B>>
BlockVectorWindow & Dune::BlockVectorWindow< B, A >::operator= ( const BlockVectorWindow< B, A > &  a)
inline

assignment

◆ operator=() [3/3]

template<class B , class A = std::allocator<B>>
BlockVectorWindow & Dune::BlockVectorWindow< B, A >::operator= ( const field_type k)
inline

assign from scalar

◆ operator[]() [1/2]

template<class B , class A = std::allocator<B>>
B & Dune::base_array_unmanaged< B, A >::operator[] ( size_type  i)
inlineinherited

random access to blocks

◆ operator[]() [2/2]

template<class B , class A = std::allocator<B>>
const B & Dune::base_array_unmanaged< B, A >::operator[] ( size_type  i) const
inlineinherited

same for read only access

◆ set()

template<class B , class A = std::allocator<B>>
void Dune::BlockVectorWindow< B, A >::set ( size_type  _n,
B *  _p 
)
inline

set size and pointer

◆ setptr()

template<class B , class A = std::allocator<B>>
void Dune::BlockVectorWindow< B, A >::setptr ( B *  _p)
inline

set pointer only

◆ setsize()

template<class B , class A = std::allocator<B>>
void Dune::BlockVectorWindow< B, A >::setsize ( size_type  _n)
inline

set size only

◆ size()

template<class B , class A = std::allocator<B>>
size_type Dune::base_array_unmanaged< B, A >::size ( ) const
inlineinherited

number of blocks in the array (are of size 1 here)

◆ two_norm()

template<class B , class A = std::allocator<B>>
FieldTraits< field_type >::real_type Dune::block_vector_unmanaged< B, A >::two_norm ( ) const
inlineinherited

two norm sqrt(sum over squared values of entries)

◆ two_norm2()

template<class B , class A = std::allocator<B>>
FieldTraits< field_type >::real_type Dune::block_vector_unmanaged< B, A >::two_norm2 ( ) const
inlineinherited

Square of the two-norm (the sum over the squared values of the entries)

Member Data Documentation

◆ n

template<class B , class A = std::allocator<B>>
size_type Dune::base_array_unmanaged< B, A >::n
protectedinherited

◆ p

template<class B , class A = std::allocator<B>>
B* Dune::base_array_unmanaged< B, A >::p
protectedinherited

The documentation for this class was generated from the following file: