dune-istl 3.0-git
umfpack.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_ISTL_UMFPACK_HH
4#define DUNE_ISTL_UMFPACK_HH
5
6#if HAVE_SUITESPARSE_UMFPACK || defined DOXYGEN
7
8#include<complex>
9#include<type_traits>
10
11#include<umfpack.h>
12
13#include<dune/common/exceptions.hh>
14#include<dune/common/fmatrix.hh>
15#include<dune/common/fvector.hh>
16#include<dune/common/unused.hh>
20
21#include"colcompmatrix.hh"
22
23
24namespace Dune {
36 // FORWARD DECLARATIONS
37 template<class M, class T, class TM, class TD, class TA>
38 class SeqOverlappingSchwarz;
39
40 template<class T, bool tag>
41 struct SeqOverlappingSchwarzAssemblerHelper;
42
48 template<class Matrix>
49 class UMFPack
50 {};
51
52 // wrapper class for C-Function Calls in the backend. Choose the right function namespace
53 // depending on the template parameter used.
54 template<typename T>
56 {};
57
58 template<>
60 {
61 template<typename... A>
62 static void defaults(A... args)
63 {
65 }
66 template<typename... A>
67 static void free_numeric(A... args)
68 {
70 }
71 template<typename... A>
72 static void free_symbolic(A... args)
73 {
75 }
76 template<typename... A>
77 static int load_numeric(A... args)
78 {
80 }
81 template<typename... A>
82 static void numeric(A... args)
83 {
85 }
86 template<typename... A>
87 static void report_info(A... args)
88 {
90 }
91 template<typename... A>
92 static void report_status(A... args)
93 {
95 }
96 template<typename... A>
97 static int save_numeric(A... args)
98 {
100 }
101 template<typename... A>
102 static void solve(A... args)
103 {
105 }
106 template<typename... A>
107 static void symbolic(A... args)
108 {
110 }
111 };
112
113 template<>
114 struct UMFPackMethodChooser<std::complex<double> >
115 {
116 template<typename... A>
117 static void defaults(A... args)
118 {
120 }
121 template<typename... A>
122 static void free_numeric(A... args)
123 {
125 }
126 template<typename... A>
127 static void free_symbolic(A... args)
128 {
130 }
131 template<typename... A>
132 static int load_numeric(A... args)
133 {
134 return umfpack_zi_load_numeric(args...);
135 }
136 template<typename... A>
137 static void numeric(const int* cs, const int* ri, const double* val, A... args)
138 {
140 }
141 template<typename... A>
142 static void report_info(A... args)
143 {
145 }
146 template<typename... A>
147 static void report_status(A... args)
148 {
150 }
151 template<typename... A>
152 static int save_numeric(A... args)
153 {
154 return umfpack_zi_save_numeric(args...);
155 }
156 template<typename... A>
157 static void solve(int m, const int* cs, const int* ri, std::complex<double>* val, double* x, const double* b,A... args)
158 {
159 const double* cval = reinterpret_cast<const double*>(val);
161 }
162 template<typename... A>
163 static void symbolic(int m, int n, const int* cs, const int* ri, const double* val, A... args)
164 {
166 }
167 };
168
182 template<typename T, typename A, int n, int m>
183 class UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A > >
184 : public InverseOperator<
185 BlockVector<FieldVector<T,m>,
186 typename A::template rebind<FieldVector<T,m> >::other>,
187 BlockVector<FieldVector<T,n>,
188 typename A::template rebind<FieldVector<T,n> >::other> >
189 {
190 public:
199 typedef Dune::BlockVector<
201 typename A::template rebind<FieldVector<T,m> >::other> domain_type;
203 typedef Dune::BlockVector<
205 typename A::template rebind<FieldVector<T,n> >::other> range_type;
206
215 UMFPack(const Matrix& matrix, int verbose=0) : matrixIsLoaded_(false)
216 {
217 //check whether T is a supported type
218 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
219 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
220 Caller::defaults(UMF_Control);
221 setVerbosity(verbose);
222 setMatrix(matrix);
223 }
224
233 UMFPack(const Matrix& matrix, int verbose, bool) : matrixIsLoaded_(false)
234 {
235 //check whether T is a supported type
236 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
237 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
238 Caller::defaults(UMF_Control);
239 setVerbosity(verbose);
240 setMatrix(matrix);
241 }
242
245 UMFPack() : matrixIsLoaded_(false), verbosity_(0)
246 {
247 //check whether T is a supported type
248 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
249 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
250 Caller::defaults(UMF_Control);
251 }
252
263 UMFPack(const Matrix& mat_, const char* file, int verbose=0)
264 {
265 //check whether T is a supported type
266 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
267 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
268 Caller::defaults(UMF_Control);
269 setVerbosity(verbose);
270 int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
272 {
273 matrixIsLoaded_ = false;
274 setMatrix(mat_);
275 saveDecomposition(file);
276 }
277 else
278 {
279 matrixIsLoaded_ = true;
280 std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
281 }
282 }
283
290 UMFPack(const char* file, int verbose=0)
291 {
292 //check whether T is a supported type
293 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
294 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
295 Caller::defaults(UMF_Control);
296 int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
298 DUNE_THROW(Dune::Exception, "ran out of memory while loading UMFPack decomposition");
300 DUNE_THROW(Dune::Exception, "IO error while loading UMFPack decomposition");
301 matrixIsLoaded_ = true;
302 std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
303 setVerbosity(verbose);
304 }
305
306 virtual ~UMFPack()
307 {
308 if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
309 free();
310 }
311
316 {
317 if (umfpackMatrix_.N() != b.dim())
318 DUNE_THROW(Dune::ISTLError, "Size of right-hand-side vector b does not match the number of matrix rows!");
319 if (umfpackMatrix_.M() != x.dim())
320 DUNE_THROW(Dune::ISTLError, "Size of solution vector x does not match the number of matrix columns!");
321
323 Caller::solve(UMFPACK_A,
324 umfpackMatrix_.getColStart(),
325 umfpackMatrix_.getRowIndex(),
326 umfpackMatrix_.getValues(),
327 reinterpret_cast<double*>(&x[0]),
328 reinterpret_cast<double*>(&b[0]),
329 UMF_Numeric,
330 UMF_Control,
332
333 //this is a direct solver
334 res.iterations = 1;
335 res.converged = true;
337
338 printOnApply(UMF_Apply_Info);
339 }
340
344 virtual void apply (domain_type& x, range_type& b, double reduction, InverseOperatorResult& res)
345 {
346 DUNE_UNUSED_PARAMETER(reduction);
347 apply(x,b,res);
348 }
349
355 void apply(T* x, T* b)
356 {
358 Caller::solve(UMFPACK_A,
359 umfpackMatrix_.getColStart(),
360 umfpackMatrix_.getRowIndex(),
361 umfpackMatrix_.getValues(),
362 x,
363 b,
364 UMF_Numeric,
365 UMF_Control,
367 printOnApply(UMF_Apply_Info);
368 }
369
381 void setOption(unsigned int option, double value)
382 {
383 if (option >= UMFPACK_CONTROL)
384 DUNE_THROW(RangeError, "Requested non-existing UMFPack option");
385
386 UMF_Control[option] = value;
387 }
388
392 void saveDecomposition(const char* file)
393 {
394 int errcode = Caller::save_numeric(UMF_Numeric, const_cast<char*>(file));
395 if (errcode != UMFPACK_OK)
396 DUNE_THROW(Dune::Exception,"IO ERROR while trying to save UMFPack decomposition");
397 }
398
400 void setMatrix(const Matrix& matrix)
401 {
402 if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
403 free();
404 umfpackMatrix_ = matrix;
405 decompose();
406 }
407
408 template<class S>
409 void setSubMatrix(const Matrix& _mat, const S& rowIndexSet)
410 {
411 if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
412 free();
413 umfpackMatrix_.setMatrix(_mat,rowIndexSet);
414 decompose();
415 }
416
424 void setVerbosity(int v)
425 {
426 verbosity_ = v;
427 // set the verbosity level in UMFPack
428 if (verbosity_ == 0)
429 UMF_Control[UMFPACK_PRL] = 1;
430 if (verbosity_ == 1)
431 UMF_Control[UMFPACK_PRL] = 2;
432 if (verbosity_ == 2)
433 UMF_Control[UMFPACK_PRL] = 4;
434 }
435
441 {
442 return UMF_Numeric;
443 }
444
450 {
451 return umfpackMatrix_;
452 }
453
458 void free()
459 {
460 if (!matrixIsLoaded_)
461 {
462 Caller::free_symbolic(&UMF_Symbolic);
463 umfpackMatrix_.free();
464 }
465 Caller::free_numeric(&UMF_Numeric);
466 matrixIsLoaded_ = false;
467 }
468
469 const char* name() { return "UMFPACK"; }
470
471 private:
472 typedef typename Dune::UMFPackMethodChooser<T> Caller;
473
474 template<class M,class X, class TM, class TD, class T1>
477
479 void decompose()
480 {
482 Caller::symbolic(static_cast<int>(umfpackMatrix_.N()),
483 static_cast<int>(umfpackMatrix_.N()),
484 umfpackMatrix_.getColStart(),
485 umfpackMatrix_.getRowIndex(),
486 reinterpret_cast<double*>(umfpackMatrix_.getValues()),
487 &UMF_Symbolic,
488 UMF_Control,
490 Caller::numeric(umfpackMatrix_.getColStart(),
491 umfpackMatrix_.getRowIndex(),
492 reinterpret_cast<double*>(umfpackMatrix_.getValues()),
493 UMF_Symbolic,
494 &UMF_Numeric,
495 UMF_Control,
497 Caller::report_status(UMF_Control,UMF_Decomposition_Info[UMFPACK_STATUS]);
498 if (verbosity_ == 1)
499 {
500 std::cout << "[UMFPack Decomposition]" << std::endl;
501 std::cout << "Wallclock Time taken: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_WALLTIME] << " (CPU Time: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_TIME] << ")" << std::endl;
502 std::cout << "Flops taken: " << UMF_Decomposition_Info[UMFPACK_FLOPS] << std::endl;
503 std::cout << "Peak Memory Usage: " << UMF_Decomposition_Info[UMFPACK_PEAK_MEMORY]*UMF_Decomposition_Info[UMFPACK_SIZE_OF_UNIT] << " bytes" << std::endl;
504 std::cout << "Condition number estimate: " << 1./UMF_Decomposition_Info[UMFPACK_RCOND] << std::endl;
505 std::cout << "Numbers of non-zeroes in decomposition: L: " << UMF_Decomposition_Info[UMFPACK_LNZ] << " U: " << UMF_Decomposition_Info[UMFPACK_UNZ] << std::endl;
506 }
507 if (verbosity_ == 2)
508 {
509 Caller::report_info(UMF_Control,UMF_Decomposition_Info);
510 }
511 }
512
513 void printOnApply(double* UMF_Info)
514 {
515 Caller::report_status(UMF_Control,UMF_Info[UMFPACK_STATUS]);
516 if (verbosity_ > 0)
517 {
518 std::cout << "[UMFPack Solve]" << std::endl;
519 std::cout << "Wallclock Time: " << UMF_Info[UMFPACK_SOLVE_WALLTIME] << " (CPU Time: " << UMF_Info[UMFPACK_SOLVE_TIME] << ")" << std::endl;
520 std::cout << "Flops Taken: " << UMF_Info[UMFPACK_SOLVE_FLOPS] << std::endl;
521 std::cout << "Iterative Refinement steps taken: " << UMF_Info[UMFPACK_IR_TAKEN] << std::endl;
522 std::cout << "Error Estimate: " << UMF_Info[UMFPACK_OMEGA1] << " resp. " << UMF_Info[UMFPACK_OMEGA2] << std::endl;
523 }
524 }
525
526 UMFPackMatrix umfpackMatrix_;
527 bool matrixIsLoaded_;
528 int verbosity_;
529 void *UMF_Symbolic;
530 void *UMF_Numeric;
531 double UMF_Control[UMFPACK_CONTROL];
532 };
533
534 template<typename T, typename A, int n, int m>
536 {
537 enum { value=true};
538 };
539
540 template<typename T, typename A, int n, int m>
542 {
543 enum { value = true };
544 };
545}
546
547#endif // HAVE_SUITESPARSE_UMFPACK
548
549#endif //DUNE_ISTL_UMFPACK_HH
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Implementation of the BCRSMatrix class.
UMFPack(const Matrix &matrix, int verbose, bool)
Constructor for compatibility with SuperLU standard constructor.
Definition umfpack.hh:233
void setVerbosity(int v)
sets the verbosity level for the UMFPack solver
Definition umfpack.hh:424
void * getFactorization()
Return the matrix factorization.
Definition umfpack.hh:440
static void report_info(A... args)
Definition umfpack.hh:142
Dune::BCRSMatrix< FieldMatrix< T, n, m >, A > Matrix
The matrix type.
Definition umfpack.hh:192
static int load_numeric(A... args)
Definition umfpack.hh:132
Dune::BCRSMatrix< FieldMatrix< T, n, m >, A > matrix_type
Definition umfpack.hh:193
static int load_numeric(A... args)
Definition umfpack.hh:77
static void report_status(A... args)
Definition umfpack.hh:92
UMFPack(const Matrix &mat_, const char *file, int verbose=0)
Try loading a decomposition from file and do a decomposition if unsuccessful.
Definition umfpack.hh:263
Dune::BlockVector< FieldVector< T, m >, typename A::template rebind< FieldVector< T, m > >::other > domain_type
The type of the domain of the solver.
Definition umfpack.hh:201
void setMatrix(const Matrix &matrix)
Initialize data from given matrix.
Definition umfpack.hh:400
virtual void apply(domain_type &x, range_type &b, InverseOperatorResult &res)
Apply inverse operator,.
Definition umfpack.hh:315
static void symbolic(A... args)
Definition umfpack.hh:107
static void report_info(A... args)
Definition umfpack.hh:87
void free()
free allocated space.
Definition umfpack.hh:458
static void free_symbolic(A... args)
Definition umfpack.hh:72
static int save_numeric(A... args)
Definition umfpack.hh:152
static void free_numeric(A... args)
Definition umfpack.hh:122
void setSubMatrix(const Matrix &_mat, const S &rowIndexSet)
Definition umfpack.hh:409
static int save_numeric(A... args)
Definition umfpack.hh:97
static void report_status(A... args)
Definition umfpack.hh:147
static void defaults(A... args)
Definition umfpack.hh:117
static void free_numeric(A... args)
Definition umfpack.hh:67
ColCompMatrixInitializer< BCRSMatrix< FieldMatrix< T, n, m >, A > > MatrixInitializer
Type of an associated initializer class.
Definition umfpack.hh:197
static void numeric(A... args)
Definition umfpack.hh:82
UMFPackMatrix & getInternalMatrix()
Return the column compress matrix from UMFPack.
Definition umfpack.hh:449
UMFPack(const Matrix &matrix, int verbose=0)
Construct a solver object from a BCRSMatrix.
Definition umfpack.hh:215
void setOption(unsigned int option, double value)
Set UMFPack-specific options.
Definition umfpack.hh:381
const char * name()
Definition umfpack.hh:469
Dune::ColCompMatrix< Matrix > UMFPackMatrix
The corresponding SuperLU Matrix type.
Definition umfpack.hh:195
Dune::BlockVector< FieldVector< T, n >, typename A::template rebind< FieldVector< T, n > >::other > range_type
The type of the range of the solver.
Definition umfpack.hh:205
void apply(T *x, T *b)
additional apply method with c-arrays in analogy to superlu
Definition umfpack.hh:355
static void numeric(const int *cs, const int *ri, const double *val, A... args)
Definition umfpack.hh:137
static void solve(int m, const int *cs, const int *ri, std::complex< double > *val, double *x, const double *b, A... args)
Definition umfpack.hh:157
static void free_symbolic(A... args)
Definition umfpack.hh:127
UMFPack()
default constructor
Definition umfpack.hh:245
UMFPack(const char *file, int verbose=0)
try loading a decomposition from file
Definition umfpack.hh:290
static void defaults(A... args)
Definition umfpack.hh:62
static void solve(A... args)
Definition umfpack.hh:102
virtual void apply(domain_type &x, range_type &b, double reduction, InverseOperatorResult &res)
apply inverse operator, with given convergence criteria.
Definition umfpack.hh:344
void saveDecomposition(const char *file)
saves a decomposition to a file
Definition umfpack.hh:392
static void symbolic(int m, int n, const int *cs, const int *ri, const double *val, A... args)
Definition umfpack.hh:163
Definition basearray.hh:19
Statistics about compression achieved in implicit mode.
Definition bcrsmatrix.hh:81
A sparse block matrix with compressed row storage.
Definition bcrsmatrix.hh:412
size_type dim() const
dimension of the vector space
Definition bvector.hh:279
A vector of blocks with memory management.
Definition bvector.hh:309
Sequential overlapping Schwarz preconditioner.
Definition overlappingschwarz.hh:742
Definition overlappingschwarz.hh:683
derive error class from the base class in common
Definition istlexception.hh:16
Definition matrixutils.hh:25
Statistics about the application of an inverse operator.
Definition solver.hh:32
Abstract base class for all solvers.
Definition solver.hh:79
Definition solvertype.hh:14
@ value
Whether this is a direct solver.
Definition solvertype.hh:22
Definition solvertype.hh:28
@ value
whether the solver internally uses column compressed storage
Definition solvertype.hh:34
Use the UMFPack package to directly solve linear systems – empty default class.
Definition umfpack.hh:50
Definition umfpack.hh:56