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ABSTRACT Barnacle muscle fibers subjected to constant current stimulation produce a
variety of types of oscillatory behavior when the internal medium contains the Ca"+ chelator
EGTA. Oscillations are abolished if Ca"+ is removed from the external medium, or if the K+
conductance is blocked. Available voltage-clamp data indicate that the cell's active conduc-
tance systems are exceptionally simple. Given the complexity of barnacle fiber voltage
behavior, this seems paradoxical. This paper presents an analysis of the possible modes of
behavior available to a system of two noninactivating conductance mechanisms, and indicates
a good correspondence to the types of behavior exhibited by barnacle fiber. The differential
equations of a simple equivalent circuit for the fiber are dealt with by means of some of the
mathematical techniques of nonlinear mechanics. General features of the system are (a) a
propensity to produce damped or sustained oscillations over a rather broad parameter range,
and (b) considerable latitude in the shape of the oscillatory potentials. It is concluded that for
cells subject to changeable parameters (either from cell to cell or with time during cellular
activity), a system dominated by two noninactivating conductances can exhibit varied
oscillatory and bistable behavior.

INTRODUCTION

Voltage-clamp studies of the barnacle muscle (Keynes et al., 1973; Hagiwara et al., 1969;
Hagiwara et al., 1974; Murayama and Lakshminarayanaiah, 1977; Beirao and Lakshmina-
rayanaiah, 1979) indicate that the fiber possesses a simple conductance system consisting of
voltage dependent Ca"+ and K+ channels, neither of which inactivates appreciably. Current-
clamp studies, however, show complicated oscillatory voltage behavior (Hagiwara and
Nakajima, 1966; Murayama and Lakshminarayanaiah, 1977). In this paper we ask whether a
system of two noninactivating conductances can, in fact, account for such phenomena. A
mathematical study shows that this simple system can predict much of the barnacle fiber
behavior, although the simplest model fails to explain some areas of behavior.
Of the two species of ion conductances in barnacle muscle (voltage- and time-dependent),

neither shows fast inactivation, although accumulation of permeating ions produces time-
dependent reduction of K+ currents (Keynes et al., 1973) and may also account for the slow
but variable decay of Ca"+ channel currents. Two noninactivating conductances would
constitute an unusually simple conductance apparatus, compared with other crustaceans (cf.
Mounier and Vassort, 1975; Hencek and Zachar, 1977). There is preliminary evidence for a
Ca++-activated gK in the barnacle fiber (Murayama and Lakshminarayanaiah, 1977). In our
analysis this process would not enter into consideration of the primary oscillation, but it might
effect slow modulations to produce "bursting" phenomena similar to those modelled for
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Aplysia neuron (Plant and Kim, 1976; Plant, 1976). Since our current clamp records were
obtained from EGTA-perfused fibers, any Ca++-dependent slow processes would necessarily
be depressed. We do, however, indicate how Ca"+ accumulation at the inner surface of the
membrane may act as a very slow "inactivation" process.

With IK and ICa dominating the membrane, it would be reasonable to anticipate a limited
repertoire of voltage behavior in barnacle fibers. Under physiological conditions this is indeed
the case: the barnacle fiber responds to nerve stimulation like other crustaceans, with graded
depolarizations. But EGTA-perfused fibers subjected to constant current stimulation exhibit
a variety of complicated voltage responses. One is compelled to ask whether the two
noninactivating conductances would be sufficient to produce voltage oscillations as variable in
character as those illustrated in the literature (cf. Hagiwara and Nakajima, 1966; Murayama
and Lakshiminarayanaiah, 1977). Other factors, such as failure of radial space clamp (caused
by membrane invaginations), ion accumulation, slow inactivation, inhomogeneous distribu-
tion of channel types, and further species of conductances, could all lend additional
complexity to the system and perhaps even cause additional oscillations.

In this paper we consider the voltage oscillations induced under current clamp, and explore
the possibility that they are produced by nothing more than two noninactivating conductances
distributed homogeneously in a well space-clamped membrane. The observed behavior is
compared with that predicted from a simple theoretical model. Although the model will be
seen to give a reasonably good quantitative account of the current-clamp data, accurate fitting
of the data for a limited set of conditions is not our main concern, since the extant
voltage-clamp data are variable (cf. Keynes et al., 1973; Hagiwara et al., 1974). Rather, we
study the range of behavior available to an excitable system of two nonlinear, noninactivating
conductances, showing how the system predicts not only oscillations, but also pronounced
qualitative variations in the character of the oscillations for different sets of parameters.
Although this does not, of course, preclude involvement of other factors, it suggests that they
have only a modulating influence, and are not fundamental to the oscillations.

LIST OF ABBREVIATIONS OF MODEL PARAMETERS

I = applied current (,uA/cm2)
IL, IC, IK = leak, Ca++, and K+ currents, respectively (ALA/cm2)
gL. gca. gK = maximum or instantaneous conductance values for leak, Ca", and K+ pathways,
respectively (mmho/cm2)
gC, = conductance constant for nonlinear Ica (mmho/cm2)
V = membrane potential (mV)
VL, VCa, VK = equilibrium potential corresponding to leak, Ca++, and K+ conductances, respectively
(mV)
M = fraction of open Ca"+ channels
N = fraction of open K+ channels
MX(V), N_(V) = fraction of open Ca"+ and K+ channels, at steady state
XM(V), XN(V) = rate constant for opening of Ca"+ and K+ channels (s-')
AM, AN = maximum rate constants for Ca++ and K+ channel opening (s-')
VI = potential at which M_ = 0.5 (mV)
V2 = reciprocal of slope of voltage dependence of Mz. (mV)
V3 = potential at which N. = 0.5 (mV)
V4 = reciprocal of slope of voltage dependence of NCO (mV)
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[Ca++]i, [Ca++], = internal and external Ca++ concentration (mM)
K = accumulation-layer constant (cm- ')
F = Faraday constant
C = membrane capacitance (iuF/cm2)

METHODS

Large specimens of the barnacle Balanus nubilus (Pacific Bio-Marine Laboratories Inc., Venice, Calif.)
were used. The barnacle was sawed into lateral halves, and the depressor scutorum rostralis muscles
were carefully exposed. Individual fibers were dissected, the incision starting from the tendon. The other
end of the muscle was cut close to its attachment on the shell and ligatured. Isolated fibers were either
used immediately or kept for up to 30 min in standard artifical seawater (ASW; see below) before use.
Experiments were carried out at room temperature of -220C.
The muscle chamber, internal and external electrodes, internal perfusion system and current

clamping system were essentially similar to those described by Keynes et al. (1973).
The composition of the normal internal solution was: K acetate (180 mM), glucose (600 mM), Tris

OH (12.5 mM), and EGTA (2.5 mM). For some experiments the internal solution consisted of Cs
acetate (180 mM), TEA chloride (60 mM), glucose (485 mM), Tris OH (12.5 mM), and EGTA (2.5
mM). The external solutions were either normal ASW (385 mM NaCl, 10 mM KCI, 10 mM CaC12, 50
mM MgCl2, and 10 mM TES), high-Ca++ ASW (325 mM NaCI, 10 mM KCI, 100 mM CaC12, and 10
mM TES, or Ca++-free ASW as normal ASW except CaC12 substituted by MgCI2).

Most of the results are presented in conjunction with theoretical computations of voltage oscillations.
The differential equation systems were integrated using the MLAB program developed at National
Institutes of Health (NIH) (Knott, 1979). This program employs the Geary-Nordsieck algorithm for
numerical integration, which is adequate for our problem. Much of the analysis makes use of methods of
nonlinear mechanics, and various analytical results are given in the text in order to gain insight into the
requirements for oscillation.

The Model
In accord with the voltage-clamp experiments of Keynes et al. (1973), the model is assigned two
independent voltage-dependent conductances, gK and gca, each having a sigmoid voltage dependence.
The relaxation times with which these conductances approach new values after voltage changes are
given as bell-shaped functions of voltage. We shall assume for simplicity that the relaxation kinetics are
first order, since precise kinetics are not essential for the description of all excitation effects (cf. Lecar
and Nossal, 1971; FitzHugh, 1961). In general we have used linear relations for the instantaneous
current-voltage curves through open-channels. Although our own experiments on the instantaneous
Ca"+ current in barnacle muscle (unpublished data) show departures from linearity, under situations of
high permeable-ion gradient, in all but one instance we stick for the sake of simplicity to the linear
driving force approximation. The exception occurs when we look at the Ca++ conductance system in
isolation from gK, for under these circumstances there is no countering force to keep the system in the
nearly linear region.

Fig. I shows the equivalent circuit hypothesized for a space-clamped patch of sarcolemma membrane.
The equations describing the membrane behavior are:

I C V +gL(VL) + gcaM(V- Vca) + gKN(V- VK)
M= XM(V) [M(V) -M (1)
N= XN(V) [N(V) - N].

The parameters and variables are defined in the list of abbreviations. The variables M and N are
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FIGURE 1 Equivalent circuit for a patch of space-clamped barnacle sarcolemma.

analogous to the Hodgkin-Huxley (1952) m"n" and "n" parameters. M and N are the fraction of
channels open at any given time and, by rather elementary statistical arguments, are given the forms
(e.g., Lecar et al., 1975; Ehrenstein and Lecar, 1977):

M.(V)= 1/2 {1 + tanh [(V- V1)/V2]}

XM(V) = AMcosh ([V- V1]/2V2)
N.(V) = 1/2 Il + tanh [(V - V3)/V4]}

XN(V) =XN cosh ([V- V3]/2V4).
Eqs. 1 and 2 represent a third-order nonlinear system of the Hodgkin-Huxley form, which we shall use

to explain the excitation behavior of the barnacle muscle. Values for the parameters were drawn from
the voltage-clamp literature or from our own voltage-clamp data. In many cases we shall focus on the
way in which the character of the solutions changes as the parameters are made to vary.

RESULTS

Experimental Observations
Voltage behavior of current-clamped fibers was observed under three different conditions:
with Ca++-free external solution (to minimize gCa), with Cs/TEA-containing internal
perfusion solution (to minimize g90, and with solutions that optimize both gK and gca.

K+ Conductance
In Ca++-free solutions fibers produce no voltage oscillations. The membrane response to small
stimuli is not discernably different from a passive RC circuit, but as the stimuli increase, a
small active response is seen (Fig. 2a); instead of maintaining a voltage that would be
dominated by the drop across the leakage resistance, the membrane partially repolarizes,
leaving a small peak where the purely RC-response is truncated. At the end of the stimulus the
voltage (which has usually slightly depolarized again) returns almost exponentially to rest.
The straightforward interpretation is that the larger stimuli activate a nonlinear K+
conductance, thereby producing an outward, hyperpolarizing current. The subsequent slow
polarization of the K+ plateau is probably due to K+ accumulation during the prolonged
stimulus (Keynes et al., 1973) and/or to a small residual Ca++ current, but not to gK
inactivation.
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FIGURE 2 Plateau potentials of the K+ system. (a) Voltage responses (in millivolts) of a fiber to
increasing current stimulus (480, 960, and 1200 gA/cm2). External saline: Ca++-free ASW. Internal
saline: K+ perfusate. In this and subsequent records, the duration (in milliseconds) of the current stimulus
is indicated by arrowheads. (b) Computed voltage response of model to increasing currents. These curves
represent numerical solutions to Eq. 3 for I = 25, 100, and 400. Other parameters were as follows: gca - 0,
gK = 8, gL = 3, VK = -70, VL = -50, XN = 1/15, C - 20, V3 - -1.0, V4 = 14.5. Initial conditions:
V(O) = - 50, N(0) = N, (- 50). The value for gL was set at 3 instead of 2 to simulate roughly the increased
leak frequently encountered in Ca++-free solutions.

Ca++ Conductance
The behavior of gK-blocked fibers is somewhat more complex. Again, no oscillations are
observed, and very small stimuli produce simple RC-like responses. With increasing stimuli,
however, a threshold is reached and bistability in the membrane voltage becomes evident.
Beyond a threshold (- - 17 mV) the membrane voltage shoots rapidly to about + 20 mV and
remains in a depolarized state with a slow repolarizing droop. This is a "Ca"+ plateau action
potential" (Fig. 3a, top trace). When the stimulus pulse ends, the fiber does not return to rest,
but simply undergoes a small voltage drop caused by the removal of the stimulating current.
Between hundreds of milliseconds and several seconds later, as the plateau voltage continues
to decline, the voltage does reach a threshold and falls precipitously to rest (Fig. 3c). The
threshold for returning to rest occurs at a more depolarized voltage (- 0 mV) than for
activation.
The plateau action potential is readily interpreted as indicating that the only operative

conductance system of significance (when gK is blocked) is a nonlinear gca* Threshold
behavior would result from the negative resistance provided by the inward, depolarizing ICa;
bistability would follow from lack of voltage-sensitive inactivation in the negative resistance
element.

Oscillations: K+ and Ca`+ Conductances Together
The voltage behavior of the current-clamped fiber when either gK or gca is minimized is
relatively simple and predictable; essentially, stimulation results in one of two types of
plateaus. One might anticipate that when both conductances are recruited simultaneously, a
voltage plateau intermediate between those for all K+ and all Ca++ would result. This is not,
however, the case; the voltage behavior, over a wide range of current stimulus, is oscillatory.

Small stimuli produce small, essentially passive depolarizations, but once a threshold
voltage (which is in the same range as the all-Ca++ threshold) is reached, oscillations appear.
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FIGURE 3 Plateau potentials of the all-Ca" system. (a) Voltage responses (in millivolts) of a fiber to two
values of current stimulus, 60 uA/CM2 (lower trace) and 240 jAA/CM2 (upper trace). Note that for the
smaller current the voltage reaches its plateau value after the stimulus is over. Time is expressed in
milliseconds. External saline: high-Ca++ ASW (100 mM Ca++). Internal saline: Cs/TEA/EGTA
perfusate. (b) Voltage response (mV) of the model (nonlinear driving force) to increasing currents. These
curves represent numerical solutions to eq. 3 and 7, for I = 15, 25, and 50. Other parameters were as
follows: gK = 0,gc. = 40, gL = 2, [Ca"]i = 0, [Ca ]J = 100, VL = -35. AM = 0. 1, C = 20, VI = 10, V2 =
15. Initial conditions V(0) = -35, M(O) = MA,, (-35). Time is expressed in milliseconds. (c) Responses of
a fiber to two subsequent current stimuli (360 ,uA) 1 min apart (upper trace first). Duration of the
stimulus is 100 ms, so that these records emphasize the poststimulus part of the response. These represent
particularly long plateau action potentials, but are typical in shape. Voltage, mV; Time, s. (d)
Poststimulus voltage response of the model with an accumulation term. This curve* represents a solution to
Eq. 8 for I = 0. Other parameters were as follows: gK 0, gca = 40, gL - 2,
[Ca++]. = 100, VL = -35, Vl = 10, V2 = 15, C = 20, K = -10'-. Initial conditions V(0) = +28, [Ca++]i
(0) = 0.001. Voltage, mV; time, s.

Oscillations of barnacle muscle fibers are decidedly not stereotyped (see also Hagiwara and
Nakajima, 1966; Murayama and Lakshminarayanaiah, 1977); they are variable and some-
times complex. Depending on experimental parameters such as leakage or Ca +̀ conductance,
the oscillations can either be damped or continuous. Usually, but not always, oscillations cease
at the end of the stimulus and the fiber returns to rest. Fig. 4a shows a sequence of damped
oscillations for various values of applied current. Although the amplitude and frequency of the
oscillations are dependent on stimulus strength, increasing the stimulus does not produce a
monotonic change in oscillation amplitude and frequency. Eventually, as I increases, the
voltage excursions decrease and the rate of damping of the oscillations increases.

Factors other than current strength also influence the character of the oscillations. The
external calcium ion concentration is particularly influential. Fibers that show little or no
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FIGURE 4 Voltage oscillations in fibers with Ca"+ and K+ conductances. External saline: either ASW
(ai, aii, aiii, bi, bii, cii), Ca++-free ASW (biv), or, in all others, high Ca++ ASW. Internal saline: K+
perfusate. Voltage, mV; time, ms. (a) Voltage responses of a fiber to varying current stimulus. Current
from top to bottom: 180, 540, and 900 AA. (b) Effect of varying [Ca"+]0. Current stimulus, 240 MA. i, ii,
and iil, iv are from two different fibers. In i and ii, [Ca"+]. is increased from 10 mM (i) to 100 mM (ii).
In ill and iv it is decreased from 10 mM (i) to 0 mM (iv). The contrast between i and ill also illustrates
how variable the oscillatory response can be from fiber to fiber. Trace iv illustrates the RC response of the
fiber in 0 mM Ca"+. (c) Variety of oscillatory characteristics. Current stimuli are 180, 600, 180, 360, 960,
and 600 MA from i through vi.
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oscillations in normal saline (10 mM Ca++) usually will oscillate when 100 mM Ca++ is
substituted. Fibers which oscillate in normal saline change their mode of oscillation in 100
mM Ca++ saline (Fig. 4b).
The "piggyback" electrode assembly that perfuses saline through the cell interior produces

variable degrees of damage to the invaginating membrane, which leads to individual variation
in the nonspeciric leak. During the voltage-clamp experiments, leak conductance of the
barnacle fiber tends to increase as the preparation ages (personal observation). Current-
clamped preparations, as they age, eventually either cease oscillating in response to stimuli or
produce more and more damped oscillations. The variability of gL from preparation to
preparation and with time in a given preparation may be a major factor in the lack of
stereotyped behavior in barnacle fibers.

It is worth pointing out in greater detail the oscillatory behavior types exhibited by the
fiber, which encompass a broad range. Some fibers produce almost sinusoidal oscillations, and
these are damped to varying degrees (Fig. 4cii and 4civ). Other fibers produce trains of spikes,
with the details of their spike shape and their periodicity varying considerably (Fig. 4ci and
4civ).

Quite frequently, fibers display a bistable type of oscillation: at the end of the stimulus the
voltage falls to a slightly lower mean level, but continues to oscillate (usually for not
>100-200 ms) and then falls to rest (Fig. 4ai). Occasionally this bistability appears chaotic,
with the fiber producing sporadic bursts of activity (Fig. 4cvi).
How the individual conductances can produce the type of plateau behavior shown by the

barnacle fiber seems fairly clear. It is a bit more difficult to decide intuitively whether these
two nonlinear conductances, neither of which inactivates appreciably, could interact to create
the array of behavior that oscillating fibers display. The mathematical analysis which follows
is consistent with the simplest interpretation of the single-conductance experiments, and
shows that a system of two noninactivating nonlinear conductances oscillates under a wide
variety of conditions, and that the oscillations can take many forms, dependent on the values
of conductance parameters and applied current.

Unlike oscillations observed under current clamp, current oscillations observed under
voltage clamp cannot occur in a system having only voltage-dependent conductances. Keynes
et al. (1973) showed that voltage-clamp oscillations diminish or disappear when radial space
clamp is improved (by "inflating" the fiber to open up the membrane clefts). In our analysis
we assume perfect space clamp. We have done additional computations using two patches of
membrane, each obeying Eq. 1, but separated by a series resistance. For current-clamp
conditions we found that the two-patch model does not give oscillations qualitatively different
from the space-clamped model, although the detailed quantitative solutions change. For
voltage-clamp conditions, on the other hand, there is an optimum range of cleft resistance for
which the cleft membrane shows current oscillations even though the surface membrane is
under potential control. The oscillations seen under voltage clamp may therefore be induced
as approximate current-clamp oscillations of the cleft membrane when departure from radial
space clamp is taken into account. The two-patch computation simulated the voltage-clamp
oscillations and also their diminution (by varying the cleft-resistance parameters). Thus, it
seems reasonable to conjecture that, because of the complicated membrane geometry, the
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system responsible for voltage oscillations under current clamp can also account for current
oscillations under voltage clamp under conditions that are, by definition, imperfect.

ANALYSIS

To explore the contribution of the components of the overall conductance system, we shall
examine in turn the behavior of each of the two nonlinear conductances operating in isolation
from the other. The behavior of the two nonlinear conductances acting in concert will be
examined afterward. This should demonstrate how the interaction of the two nonlinear
conductances produces novel behavior.

Responses ofSystem with a Single Voltage-dependent Conductance

Consider a system in which either the Ca"+ or the K+ system is working in isolation. Figs. 2b
and 3c show that the all-Ca"+ system has bistable responses and a characteristic threshold,
whereas the all-K+ system exhibits a graded response with a transient peak followed by a
decay to a voltage plateau.

Let us generalize and write the equation of a single-conductance system as:

I=CV + gL(V- VL) + gi4(V- Vi)

=X (V) [lMXV) -Al]

Here ,u can be either M or N, and the subscript i stands either for Ca or K. The main
qualitative difference between the two cases is whether V, is less than or greater than VL. For
these systems, Vca > VL and VK < VL. Other parameters describing the voltage-dependent
conductances are not very different for the two systems. Let us study the behavior of Eqs. 3 in
the V, ,A-phase plane. We can write the equations for the nullclines (that is, the V = 0 and , =
0 isoclines) explicitly as

(V = 0 nullcline) V(yg) = (I + gLVL ± gijtV)/(gL + giti), (4a)

(,u = 0 nullcline) 1i(V) = ,ut(V). (4b)

Eq. 4 shows that the V = 0 nullcline is a bilinear function of,, which varies between the
values

V(0) = (I + gLVL) / L,

and

V(1) = (I + gLVL + gjV) / (gL + gi)* (5)
Fig. 5 shows nullclines for typical all-K+ and all-Ca++ conditions, illustrating the qualitative
difference between the two cases. When V; < VL (all-K+) there can be only one singular point,
whereas when Vj > VL (all-Ca++) there can be as many as three singular points. The ft = 0
nullcline is approximately the same in both cases, with slight shifts along the voltage axis and
slight differences in steepness.
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FIGURE S (a) V,N phase plane for all-K+ system. Dotted curve shows a typical phase trajectory when
applied current is switched from 0 to 400. Vl = 0 nullclines are shown for various values of applied current,
I. The intersection of the N = 0 and V = 0 nullcline for each value of current is the sole singular point for
the all-K+ system for that set of parameters and is always a stable node. Parameters used are gL - 3. gC. =
°. gK = 8, VL = 50. VK =-70, V3 = - 1.0, V4 = 14.5, AN = I//15, C = 20. Voltage; V is expressed in
millivolts. (b)V, M phase plane for all-Ca++ system. Parameters are those given for Fig. 3b except for
values of 1. Dotted curve ig the phase trajectory when I is switched from 0 to 100. The dashed curve is the
M~= 0 isocline. The two solid curves are the V == 0 isoclines for I = 0 and I = 100. The I = 0 nullclines
intersect at three points, A, B, and C. The points A and C are stable nodes, whereas B is a saddle point. The
pattern of the three singular points leads to bistable behavior as explained in the text. When I is switched
to 100 there is only one singular point, C; this stable node determines the plateau voltage. The line S-S
represents the threshold separatrix, sketched in approximately. (c) The effects of intracellular Ca++
accumulation shown on the V, M phase plane. The dotted line is the if = O nullcline and t4e series of solid
lines are V = O nullclines for increasing degrees of Ca accumulation (from right to left, gc. is decreased
arbitrarily as follows: 40, 30, 25, 20, 10. Concurrently [Ca++]i is increased as follows: 0.001, 0.1, 0.5, 1.0,
10. Other parameters are as for Fig. 3b, but with I = 0. Ca++ accumulation causes the V= 0 nullcline to
shift to the left, ultimately causing the stable point C to disappear, the system reverting to monostable
behavior about the resting point A.

The computer response of the all-Ca++ system, with a linear instantaneous Ca++ I-V
relation, gives an unrealistically high voltage plateau. The problem is that, although the linear
I-V relation implies some outward current, the experiments were done with close to zero
internal Ca++. Thus, a better quantitative fit to the plateau is obtained by modifying the
driving force term in Eq. 3. It is more accurate to write:

Ica= -gCaMR(V, [Ca ]i, [Ca+]O), (6)

where, in general, the conductance gC wuld be a function of the permeating ion concentra-
tion, but can be obtained by empirical fit to the instantaneous Ca I-Vcurve; and the function
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R is derived from some electrodiffusion or barrier model of permeation through an ionic
channel.

Although our own preliminary data indicate that a two-barrier model provides a better fit
to the voltage-clamp data, for the present we shall make do with an electrodiffusion
expression, since the exact form is not crucial for calculating the plateau, as long as the
expression makes some sense for the case of zero internal Ca +.

With the electrodiffusion form, the driving force function of Eq. 6 becomes:

R(V, [Ca++]i, [Ca++]0) = VI- ([Ca`]i/[Ca`+]O)exp (V/12.5)1
[1 - exp (V/ 12.5)](7

The solutions shown in Fig. 3d are ones using this nonlinear expression for ICa, and in
subsequent discussions of the all-Ca"+ system the nonlinear form is assumed. Later, when we
study the K+ and Ca"+ systems together, we revert to the linear approximation, because the
voltage never leaves the linear region.

Let us return to a consideration of the phase planes of the individual conductance systems.
By definition, the intersection points of two nullclines are equilibrium positions of V and 4,
that is, singular points of Eqs. 3. The patterns of these singular points and the stability of the
system in the neighborhood of each singular point can qualitatively explain the observed
behavior.

For the all-K+ system, each nullcline pair shown in Fig. 5a intersects only once, at a
singular point which is stable (V = 0 nullclines for several values of applied current are
illustrated; the ,u = 0 nullcline does not change as I is varied). For the larger currents (I = 100,
I = 400), the trajectories reach a voltage peak as they cross the V = 0 nullcline. This
represents the early peak seen in Fig. 2b; note that the peak occurs before V reaches its steady
state and that the voltage then declines. Such behavior, sometimes referred to as a graded
action potential, has been observed and discussed for synthetic systems having a single
voltage-dependent conductance (Mueller and Rudin, 1967; Muller and Finkelstein, 1972).

Consider now the all-Ca++ system (Fig. 5b). There are three singular points in the phase
plane for the value I = 0. Stability analysis shows that the points A and C are stable and that
B is a saddle point. What happens when we go from I = 0 to, for example, I = 100? Because of
the change in I, the system is described by a new V = 0 nullcline, to the right of the original
one, but the M = 0 nullcline is not altered. The system now has only one singular point (C'),
which is approached as the potential is depolarized under the influence of I (the trajectory for
the depolarization is shown as a dotted line). This singular point is stable, representing a
plateau voltage of the sort shown in Fig. 3d. What happens to the system when we return from
I = 100 to I = O? The initial conditions are now C' rather than A. The phase plane reverts to
the original one with three singular points, including the saddle point, B. Saddle points always
give rise to limiting curves called "separatrices," which cannot be crossed by phase trajecto-
ries. Thus, when the current is returned abruptly to zero, the system cannot cross the
separatrix and return to the stable point, A. The only singular point available to the system is
C, so that when the stimulus is turned off, the phase trajectory simply runs between C' and C,
which leaves the system in a depolarized state. Thus, the observed persistence of the voltage
plateau when the stimulus is turned off is a manifestation of bistability. Were an impulse of
current used to raise instantaneously the voltage past the region where the separatrix
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intersects the V-axis, bistability would be demonstrable in the I = 0 phase plane alone. Except
for the use of a nonlinear term for the driving force, the behavior of the all-Ca"+ system is
exactly that of the theoretical V,m-reduced Hodgkin-Huxley equations devised by FitzHugh
(1961) to explain threshold behavior in a qualitative way. FitzHugh's V,m-reduced system
describes the discontinuous threshold behavior of a hypothetical system with a single
activating conductance and no inactivation. The all-Ca"+ barnacle fiber is a realization of this
mathematical possibility.

Perturbations Caused by Ca"+ Accumulation
The all-Ca"+ version of Eq. 3 predicts stable plateau action potentials, but the real fiber does
eventually repolarize. The mechanism directly responsible for repolarization has not been
isolated. As it could be simple Ca"+ accumulation or some form of slow inactivation, we now
breifly describe in terms of the phase plane analysis how a slow process like Ca"+
accumulation brings about repolarization. Accumulation of Ca++ intracellularly will simulta-
neously cause *ca to decrease and [Ca++]i to increase. To get a qualitative idea how this will
affect the response, we need only look at the V = 0 nullclines as we alter these two parameters
(changes in these parameters do not change the M = 0 nullcline since they do not appear in
Eq. 4b). Note (Fig. 5c) that the upper stable point and the unstable point converge and then
disappear as Ca"+ accumulation proceeds (i.e., as

*
decreases and [Cal]i increases; the

decrements and increments in these parameters are arbitrarily chosen). When the unstable
point drops out, along with its separatrix, only one stable point remains and the system moves
toward it, repolarizing as it does.
A more direct way to demonstrate the termination of the plateau is to include an equation

for Ica-dependent intracellular Ca"+ accumulation. We substitute the steady-state value of
M. for the term M(t), since ion accumulation has very much slower kinetics than gating. The
resultant differential equations are:

dt = C {I - gL(V VL) + gcaM-( V)VR(V, [Ca++ ]i, [Ca++ ])I,
and

d[Cad ]i KI(CF)- cgcaM.(V)VR(V, [Ca++i], [Ca++]O)}. (8)dt K{C)

Although the second equation is oversimplified (it does not take into account various sinks for
intracellular Ca +̀), it describes the major feature of accumulation. The value for the constant
K was chosen to represent a Ca+ +-accumulating compartment of I ,m on the inner side of the
membrane. Fig. 3d is the computed solution of Eqs. 8, which uses initial conditions that
simulate the end of a stimulus pulse. After a gradual decline in voltage, there is a precipitous
fall to rest. The actual mechanism for repolarization could be more complex than Ca"+
accumulation, since Hagiwara and Nakajima (1966) have shown that Ca`+ modulates the
height of the Ca`+ spike in a manner not consistent with simple changes in the driving force.
As in some other Ca++-excitable membranes (Eckert and Brehm, 1979), the Ca++ conduc-
tance in barnacle muscle may be inactivated by elevated [Caf+]i. Such a mechanism,
however, would also be modelled, qualitatively, by concomitantly increasing [Ca++]i and

dc *decreasing gc2-

BIOPHYSICAL JOURNAL VOLUME 35 1981204



Limit-cycle oscillations

The most interesting feature of the barnacle muscle behavior under current clamp is the
voltage oscillation, which occurs only when the Ca"+ and K+ system are both operative. As
different explanations have been adduced for the oscillations, we wish to explore how well the
oscillations are explained by the two-conductance system itself with no additional mecha-
nisms.

It can be shown (Fig. 6) that the V, M, N system of Eq. 1 predicts current-induced
oscillations resembling the observed behavior. Numerical simulations, however, such as those
of Fig. 6, require the simultaneous adjustment of several parameters, and it is not easy to learn
the exact requirements for oscillation from numerical study of the full third-order system.
To study the oscillating state in some generality, we make use of the different relaxation

times of the Ca"+ and K+ conductances. We study a reduced set of equations, in which the
Ca++ system is assumed to be so much faster than the K+ system that gCa is instantaneously in
steady state at all times [i.e., M = M=(V)]. For this approximation Eq. 1 becomes

I = C d +gL(V- VL) + gCaMJ(V) (V- VCa) + gkN(V- Vk),dt

and

ad=d XN(V) (NJ(V) - N). (9)
dt

We shall call this the V,N reduced system, following the terminology of FitzHugh (1969). Eq.
9 describes a second-order system, whose properties can be visualized on the V,N-phase plane.
It might be asked why we expect Eq. 9 to be a reasonable approximation to the full system.
The justification lies in Tikhonov's theorem, utilized by Plant and Kim (1976; see their
appendix). Eqs. I are of the proper form for the V and N differential equations to satisfy an
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FIGURE 6 Examples of oscillations computed from the full V, M, N third-order system (Eq. 1). The
parameters used for these computations are: gL = 2, VL = - 50, Vc. = 100, VK = -70, AM = 1 -0, XN = 0.1,
VI = 0, V2 = 15, V3 = 10, V4 = 10, C = 20. The resting potential was taken to be -50 mV. For the
broken line (+), g&, = 6 and gK = 12, and for the solid line, gCa = 4 and gK = 8. These figures are to be
compared with the experimental data of Fig. 4. Voltage, V, mV; time, ms.
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inequality of Tikhonov that allows reduction of the dimension of the phase space without
changing the character of the singular point.

Under what conditions will the system defined by Eq. 9 have a stable limit cycle? The
Poincare-Bendixon theorem (Minorsky, 1962, p. 78; Pavlides, 1973, p. 7) states that if a phase
trajectory remains in a finite domain of phase space for all time without approaching an
equilibrium point, the trajectory is periodic or approaches a periodic trajectory.
To show that the solutions of Eqs. 9 remain in a finite domain of the V,N phase plane, we

note that for both equations the derivatives of the dynamical variables change sign when the
phase trajectory approaches the boundaries of a rectangle determined by the physical limits of
the Vand N variables. This is obvious for theN variable, which represents the fraction of open
K+ channels, and hence can vary only between 0 and 1. V, too, however, is bounded, for V
cannot go beyond two limiting potentials, for which V = 0:

V gLVL + gKVK + I < V< gLVL + gCaVca + I V (10)
gL +gK gL + gCa

Since the trajectories are confined to this rectangle, it will be sufficient to find one unstable
singular point in this region to ensure a stable limit cycle.
We next examine the character of the singular point for the reduced system. Fig. 7 shows

the nullclines for Eqs. 9. The nullclines intersect once. The intersection point is given by S =
(V,,N,) such that:

Ns = N(Vs) =I -gL(V - VK) -gCaM-(Vs) (V,- VCa)gK(Vs -VK) (1

In the usual fashion (Minorsky, 1962), Eqs. 9, when thought of as a general second order
system of the form

V=f,(V,N), N =f2(V,N), (12)

will have stability properties determined by the character of the eigenvalues of the pair of
equations linearized about the singular point, S. The eigenvalues (p), in turn, are the solutions
of the characteristic equation:

2 (fI + af2 (f,If2 _f2 afID -i +nA + VN-- = 0. (13)
aOV aN,S V9 aVaNIs

In order to have a stable limit cycle, both roots must be positive if they are real or have a
positive real part if they are complex. Since the first term in brackets in Eq. 13 is equal to the
sum of the roots, and the second term in brackets is the product of the roots, the necessary
condition for both roots positive is:

+9fI9f2I 0
(aV aN;s

Of1I0f f2 af >0. (14)
(aVaN OlVON S
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FIGURE 7 Nullclines in V, N that give a stable limit cycle. The nullclines are labeled; the spiral traces the
trajectory of the system when I is changed from 0 to 300. The point at the intersection is an unstable node.
Vertical and horizontal bars on the nullclines indicate the direction in which the trajectory must cross.
Computations are based on the parameters used in Fig. 9, but with I = 300. The sufficient condition for
oscillation is given by Eq. 15. Essentially, the condition states that the intersection must occur somewhere
in the negative-resistance part of the Ca"+ current-voltage curve. This is the ascending limb of the bump
in the V = 0 nullcline, as shown in the figure. An analogous condition for a somewhat different reduced
system is given by Plant and Kim (1976). Voltage, V, mV.
FIGURE 8 Plot of real and imaginary parts of eigenvalue (p, in Eq. 13) of the linearized V, N-reduced
equations as current is varied. The curve shown is the root with plus sign, the negative root leading to a
mirror reflection (not shown) across the real axis. When the eigenvalues are real, they are represented by
points on the real line. The shaded loop marks the range of current values for which the real part is
positive, so that there is a stable limit cycle. The imaginary part of the eigenvalue is approximately equal to
the oscillation frequency, so that the value on the imaginary axis shows the pattern of frequency variation
with applied current. Parameters used in these computations are those of Fig. 9, but with I varied as
indicated by the numbers adjacent to the curve.

The first inequality guarantees at least one positive root and the second guarantees that both
roots have the same sign.
From Eq. 9 we can substitute the explicit expressions for the partial derivatives of Eq. 14, to

obtain the following inequalities:

(M.
gca k dV) (Vca - Vs) > gL + gKNs + gCaM-(Vs) + CXN(VS),

and

gca ( (VCa - Vs) < gL + gKNs + gCaM-(Vs) + gK (NV (Vs- VK) (15)

Eqs. 15 define the conditions on the various conductance parameters for a stable limit cycle.
The inequalities can be given physical meaning if one notes that the term on the left hand side
of Eqs. 15 is essentially proportional to the negative dynamic conductance contributed by the
inward Ca current, and that the right hand side contains the term g = gL + gK N + gca M,
which is the equivalent conductance at the operating point. Thus, Eqs. 15 can be rewritten as:

(g + CN)s C [gCa am (Vca- V)is<[N+ 9K dV (V1-VK)S. (16)
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which says that the system will undergo a limit cycle oscillation, provided that the Ca`+
negative resistance can overcome the losses, but also provided that there is enough restorative
K+ voltage-dependent conductance so that the system is not driven straight to the Ca`+
plateau. Thus, the oscillatory state is an intermediate between the single-system extremes
discussed earlier; to oscillate there must be a balance between ICa and IK that will yield a single
singular point in place of the saddle point of the all-Ca`+ system. Since for values of I
satisfying Eq. 16, this singular point is unstable, we obtain a stable limit cycle.

In addition to limit-cycle oscillations, the system of Eq. 9 (and the real barnacle muscle)
can undergo damped "small" oscillations about a stable plateau. The condition for oscillatory
transients is that the relevant singular point be a stable focus; that is, that p be complex and
have a negative real part. From Eq. 13, the condition for complex roots is

( Of1 0f2V 4(Ofl Of2 0f f O (17)
aV aN;s aVON aVaN s

Examination of the equivalent circuit for eq. 9 linearized about S shows that Eq. 17 is
precisely the condition on the various reactance parameters of the equivalent parallel resonant
circuit needed to get an underdamped response.

By studying how the eigenvalue, p, changes as experimental parameters are varied, we can
see how the system goes through various forms of behavior. Fig. 8 shows how, as I is varied,
there is a current interval for which the real part of p becomes positive. This is what is
observed experimentally: the fiber begins to oscillate at some threshold of applied current and,
eventually, as current is increased, the oscillations diminish in amplitude. For high Ca`+
concentrations, the oscillations become nearly sinusoidal about a voltage near to the all-Ca++
plateau. Examples of how the oscillations change for various changes of parameters are shown
in Figs. 9, 10, and 1 1. Fig. 9 shows the change as I is varied and the corresponding changes in
the V = 0 nullcline. Fig. 10, in which gCa, gK, gL, XN, and N:. are varied substantially,

$0~~~~~~~~~.

I I MVoo0

*0 4N * * * i *
-5

X
2S 50

; V s c i ;!.A,

FIGURE 9 HOW system goes in and out of oscillation as current (I) is varied between 100 and 500.
Parameters used aregL = 2,gC.= 4.gK = 8, VL = -50, VCI, = 100, VK - 70.AM = 0-.lXN= 1/15S, V1
10,s V2 5 -15, V3 = -1, V4 = 14.5, C =20. I iS varied as indicated. (a) shows the voltage oscillations
computed from the V, N-reduced system (Eq. 9). (b) shows the change in the V = 0 isocline as current is
varied. Note by comparing with (a) that the range of stable oscillatory behavior coincides with the range
of current for which the "negative resistance" portion of the V = 0 isocline intersects the N = 0 isocline.
Voltage, V, mV; time, T, ms.
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FIGURE 10 Effects of various parameter changes on the oscillation behavior. Although parameter
changes alter the character of the oscillations, sustained oscillations occur over a wide range of parameters.
In each graph the "control" solution (shown as a solid line) is that computed in Fig. 9 for I = 300. The
dashed line is the solution after a single parameter change as indicated. (a) Increase in gca (gca = 8)
changes shape of voltage oscillations from sinusoids to more rectangular spikes, and decreases the
frequency. (b) A 13-mV depolarizing shift of the N,. (V3 = 12) curve increases the frequency of the
oscillations and lowers the amplitude. (c) Increase in TK (= XN; AN - 1/30) slows the oscillation,
illustrating that the kinetics of gK have a pronounced effect on the frequency. (d) Reducing leakage (gL =
I) increases amplitude and introduces phase shift with little or no change in frequency. Voltage, mV; time,
ms.

illustrates that the numerical requirements for oscillation are not stringent. Fig. 11 further
illustrates this point, showing pacemaker-like oscillations obtained by changing the relative
positions ofM and N on the voltage axis.

Domains of Oscillatory Behavior
To give a fuller account of the type of variability encountered experimentally, we can assess
the character of the singular point as different pairs of parameters are varied. Two-
dimensional manifolds obtained by evaluating p from Eq. 13 give a qualitative map of system
behavior and illustrate some of the phenomena which occur.

For example, Fig. 12 a shows how the system changes with varying gca and gK, with all
other parameters held constant. In the figure we see a peninsula of oscillatory behavior when
gC. and gK are in more-or-less equal competition, as well as the other forms of behavior when
one or the other conductance dominates. This particular map was done for a value of I that
shows both types of oscillation but for which no combination of gca and gK can give bistable
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FIGURE 11 Pacemaker behavior based on two noninactivating conductances. For this solution the
parameters were set to: gL = 2, gca = 4, gK = 8, VL = - 50, Vca = 100. VK = - 70, XM = 0. 1, XN = 1/1 5, V1
= - 1, V2 = 15, V3 = 10, V4 = 14.5, I = 50, C = 20. Note that this behavior (compared with that of Figs.
9 and 10) is brought about when gCa is activated at a lower voltage than gK. Voltage, V, mV; time, ms.

behavior. Fig. 12 b shows part of a map done for I = 0, where we can see the boundary
between bistable and monostable behavior, but no oscillation. In general, different two-
parameter manifolds will show different aspects of the barnacle response, but no single
two-parameter map is adequate to describe all of the possibilities.
One use for the two-parameter manifolds is to illustrate qualitatively some of the

a. I= 300 b. I= 0

20 NODE I20 =BISTABLE
15-

(Ca PLATEAU)
15

(SADDLE)

gcao -9c/ 10
MONOSTABLE

(KRESTING) ~ ~ ( RSTNG

I J~~~~~~~~~~~~~~
O 5 10 15 20 O 5 10 15 20

9K 9K

FIGURE 12 Parameter manifolds showing character of singular point for different combinations of gc.
and gK. Except for varying gca, gK and 1, the parameters used are those of Fig. 9. (a) I = 300. For this
value of stimulating current the system can either be monostable as in the unshaded regions, or show
oscillatory behavior, as in the shaded regions. Stable (limit cycle) oscillations occur only for the
combinations of gC. and gK that give an unstable equilibrium point. All such values fall in the crosshatched
region. In the lower shaded region, the singular points are complex but have negative real parts; hence, the
system has an oscillatory response to current transients, which then decays to a steady voltage. The
unshaded regions have single equilibrium points which are stable nodes. (b) I = 0. With no injected
current the system cannot oscillate. When gc. and gK are varied, the two-parameter manifold divides into
two regions. The unshaded region represents single stable nodes, whereas any combination in the shaded
half-plane has three singular points, constituting two stable nodes and a saddle point, and therefore can
exhibit bistable behavior.
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phenomena which can occur when a slow variable, such as Ca"+ accumulation, comes into
play. One might expect a slow change to act as a secular perturbation bringing the system
across the boundaries between two regions on a parameter map. Thus, a system with high
external Ca"+ might show oscillatory behavior near the all-Ca"+ plateau until the Ca"+
buildup knocks the system out of oscillation. Such a set of double relaxation oscillations is
shown experimentally in Fig. 4cvi. This behavior is clearly too complicated for the approxi-
mate phase plane system, but the maps give a hint as to what might be happening.

DISCUSSION

This analysis was motivated by a wish to explore the variable behavior originating for a simple
system of two noninactivating gated conductances. Our results indicate that a good part of the
oscillatory voltage behavior of EGTA-perfused barnacle muscle can be anticipated from the
two noninactivating conductances, without recourse to more complex conductance systems.
Two important features of the simple system are that oscillatory solutions occur over a
relatively wide region of the parameter space and that the character of the oscillations varies
through this space. This coincides nicely with the barnacle fiber which displays variable
oscillations (some sustained, some damped) and has extremely variable conductance magni-
tudes (see e.g., Keynes et al., 1973). The first feature-that the parameter requirements for
oscillation are not rigorous-is fortunate, because parameters like the time and voltage
dependence of the excitability mechanisms in barnacle are either poorly known or not agreed
upon by different workers. Because numerical requirements for oscillations proved not to be
tightly restricted, the generality of the model is enhanced.
Two modes of oscillation are produced by the system: damped oscillations and sustained or

limit cycle oscillations. The barnacle apparently produces both kinds, although it is difficult,
with a finite stimulating pulse, to distinguish between slowly damping oscillations and
sustained ones. A point worth noting is the manner in which solutions may change in
character as a parameter is monotonically varied. We illustrated a case for varying current in
which the system went in turn from no oscillations to damped oscillations, to limit-cycle
oscillations, to damped oscillation, and, finally, back again to no oscillations. This example
should emphasize the complexity of behavior inherent in this mechanistically simple system.

There are, clearly, aspects of barnacle fiber voltage behavior which are not encompassed by
the two conductance, perfect space-clamp model we have used. It cannot, for example,
produce the sort of oscillations that start small and grow, or the bistable oscillation pattern.
Nor can it produce the amplitude-modulated oscillations that are occasionally seen. It is not
clear whether these phenomena result from artifacts (e.g., "patchiness" in the membrane due
to injury, or failure of radial space clamp) or from processes like ion accumulation or
additional conductances. Where it is desired to investigate higher order effects without adding
further equations, graphical analysis is more useful for exploring various possibilities. We
have illustrated this for the simple example of the possible role of Ca"+ accumulation in the
plateau action potential. Parameter manifolds can be used to examine variation of two
parameters simultaneously.
A virtue of the stability analysis is that one can vary parameters and use the eigenvalues to

predict the nature of the voltage behavior without the necessity of integrating the differential
equations. This approach may prove useful in analyzing aspects of the behavior of other
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systems of a similar nature, such as dendritic calcium spikes of pyramidal cells (Llinas, 1979)
or the slow voltage oscillations of cells that have states dominated by a gca and a
calcium-mediated potassium conductance.
As an example of the latter type of system, pancreatic p-cells stimulated with glucose and

treated with high concentrations of TEA produce sustained trains of spikes (Atwater et al.,
1 979c), and it seems that the major excitability mechanisms under these conditions are a gca-
and a [Ca+]i-activated gK (Atwater et al., 1979a; Atwater et al., 1979b). Likewise,
neuroblastoma cells produce oscillations dependent on a gCa- and a Ca"+-dependent,
quinine-sensitive gK (Fishman and Spector, 1980). In both these cell types, multiple
conductance mechanisms, which cannot necessarily be fully blocked pharmacologically,
complicate the interpretation of results. Moreover, the fl-pancreatic cell, due to its small size,
is not amenable to voltage-clamp analysis. In order to assess the possible significance of
interactions of gca and [Ca++]-activated gK, it would be worthwhile to explore, qualitatively,
the range of behavior predictable on the basis of the two Ca++-dependent mechanisms.
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